Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Biodivers ; 19(10): e202200300, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36064949

ABSTRACT

Capparis spinosa L., commonly known as the caper bush, is an aromatic plant growing in most of the Mediterranean basin and some parts of Western Asia. C. spinosa L. has been utilized as a medicinal plant for quite a long time in conventional phytomedicine. Polyphenols and numerous bioactive chemicals extracted from C. spinosa L. display various therapeutic properties that have made this plant a target for further research as a health promoter. This review is meant to systematically summarize the traditional uses, the phytochemical composition of C. spinosa L., and the diverse pharmacological activities, as well as the synthetic routes to derivatives of some identified chemical components for the improvement of biological activities and enhancement of pharmacokinetic profiles. This review also addresses the benefits of C. spinosa L. in adapting to climate change and the socio-economic value that C. spinosa L. brings to the rural economies of many countries.


Subject(s)
Capparis , Plants, Medicinal , Capparis/chemistry , Polyphenols/pharmacology , Plants, Medicinal/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Socioeconomic Factors
2.
Article in English | MEDLINE | ID: mdl-19596744

ABSTRACT

The budding yeast Saccharomyces cerevisiae is a valuable system to study cell-cycle regulation, which is defective in cancer cells. Due to the highly conserved nature of the cell-cycle machinery between yeast and humans, yeast studies are directly relevant to anticancer-drug discovery. The budding yeast is also an excellent model system for identifying and studying antifungal compounds because of the functional conservation of fungal genes. Moreover, yeast studies have also contributed greatly to our understanding of the biological targets and modes of action of bioactive compounds. Understanding the mechanism of action of clinically relevant compounds is essential for the design of improved second-generation molecules. Here we describe our methodology for screening a library of plant-derived natural products in yeast in order to identify and characterize new compounds with anti-proliferative properties.

SELECTION OF CITATIONS
SEARCH DETAIL