Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532152

ABSTRACT

Continuous monitoring of landslides is of basic importance for understanding their behavior, defining their 3D geometry, and providing a basis for early warning purposes. While a number of instrumentations can be used for tracking surface displacement, only automatic or fixed multi-module inclinometers can be used for continuous monitoring of displacement at depth, providing valuable information for landslide geometry reconstruction. Since these instruments are very expensive, thus rarely used, a low-cost and multi-module fixed inclinometer for continuous landslide monitoring has been developed. In this paper, the electronics of the system, including sensor characteristics and optimization, controlling software, and structure are presented. For system development, a single module prototype was first developed and tested in the field to ensure sufficient measuring performance. Subsequently, the multi-module system was designed, assembled, and tested in controlled conditions. Test results indicate the good performance of the system with a displacement measuring accuracy of 0.37% of the length of the inclinometer chain. The linearity test indicates the high linearity of the measures, especially in the range ±20°, which is the typical operating range of such kinds of instrumentations. The thermal efficiency test indicates the high efficiency of the system in preventing measuring errors caused by thermal drifting.

2.
Sensors (Basel) ; 19(12)2019 Jun 16.
Article in English | MEDLINE | ID: mdl-31208118

ABSTRACT

In this work, a low-cost, open-source and replicable system prototype for thermal analysis of low-cost Micro Electro-Mechanical Systems (MEMS) Inertial Measurement Unit (IMU) sensors in tilt measurement perspective is presented and tested. The system is formed of a 3D printed frame, a thermal cell consisting in a Peltier element mounted over a heat sink, and a control and power system. The frame is designed to allow the independent biaxial tilting of the thermal cell through two servomotors. The control board is formed by an Arduino® and a self-made board including a power drive for controlling the thermal unit and servomotors. We tested the chamber analyzing the behavior of multiple MEMS IMU onboard accelerometers suitable for measuring tilt. Our results underline the variability of the thermal behavior of the sensors, also for different sensor boards of the same model, and consequently the need for the adoption of a thermal compensation strategy based on thermal analysis results. These data suggesting the need for the analysis of the thermal behavior of MEMS-based sensors, indicate the potential of our system in making low-cost sensors suitable in medium-to-high precision monitoring applications.

3.
Sensors (Basel) ; 18(8)2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30072680

ABSTRACT

Low-cost MEMS accelerometers have the potential to be used in a number of tilt-based monitoring applications but have the disadvantage of being very sensitive to temperature variation (thermal drift). In this paper, we analyze the thermal behavior of a low-cost sensor in the range -10 to +45 °C in order to provide a simple compensation strategy to mitigate this problem. For sensor analysis, we have developed a miniaturized thermal chamber, which was mounted on a tilting device to account for tilt angle variation. The obtained raw data were used to construct low degree polynomial equations that by relating the measurement error induced by thermal drift (i.e., acceleration residuals) to temperature and inclination (of each specific axis), can be used for thermal compensation. To validate our compensation strategy, we performed a field monitoring test and evaluated the compensation performance by calculating RMS errors before and after correction. After compensation, the RMS errors calculated for both the X and Y axes decreased by 96%, indicating the potential of using a simple set of equations to solve common drawbacks that currently make low-cost MEMS sensors unsuitable for tilt-based monitoring applications.

4.
Sci Total Environ ; 571: 50-8, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27459253

ABSTRACT

The boreal forest of the northern hemisphere represents one of the world's largest ecozones and contains nearly one third of the world's intact forests and terrestrially stored carbon. Long-term variations in temperature and precipitation have been implied in altering carbon cycling in forest soils, including increased fluxes to receiving waters. In this study, we use a simple hydrologic model and a 40-year dataset (1971-2010) of dissolved organic carbon (DOC) from two pristine boreal lakes (ELA, Canada) to examine the interactions between precipitation and landscape-scale controls of DOC production and export from forest catchments to surface waters. Our results indicate that a simplified hydrologically-based conceptual model can enable the long-term temporal patterns of DOC fluxes to be captured within boreal landscapes. Reconstructed DOC exports from forested catchments in the period 1901-2012 follow largely a sinusoidal pattern, with a period of about 37years and are tightly linked to multi-decadal patterns of precipitation. By combining our model with long-term precipitation estimates, we found no evidence of increasing DOC transport or in-lake concentrations through the 20th century.

5.
Sci Total Environ ; 532: 208-19, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26071962

ABSTRACT

This study was prompted by the occurrence of an extreme Damaging geo-Hydrological Event (DHE) which occurred on October 25th 2011 and which affected a wide area of the northern Mediterranean region. After analysing the storm by means of the precipitation time series, the study attempts to relate the October 25th 2011 DHE with a series of other DHEs that occurred in the period 1954-2012, assessed via the use of historical data and classified according to severity, with a Storm Erosivity Indicator (Ra). The annual mean of the Ra value (2582 MJ mm ha(-1) h(-1) y(-1)) confirmed that the study area is one of the European regions with the highest rainfall erosivity level. A shift in storminess during 1991-2012 with respect to 1954-1990 was observed. A return period of 1000 years was calculated for the single storm erosivity of October 25th, which contributed to 84% of the total annual storm erosivity of 2011 A quite good agreement was found comparing DHE distribution and severity with Ra anomalies over time. As a matter of fact, most of the low severity DHEs (62.5%) occurred in years in which the Ra was below the average value. Moreover, almost all DHEs (93%) ranging from medium- to very high-severity occurred in years for which the Ra exceeded the average value. With regard to the occurrence of the most severe DHE classes, a threshold of the Ra and a recurrence time of approximately 3300 MJ mm ha(-1) h(-1) y(-1) and 12 years, respectively, were identified. Finally, some evidences suggest that an increasing frequency of DHEs is expected in the forthcoming years. It is argued that understanding these issues is a major priority for future research in order to improve land and urban planning strategies for preserving people and the environment, leading ultimately to an effective risk reduction.

6.
BMC Genomics ; 15: 1067, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25475078

ABSTRACT

BACKGROUND: Comparison of toxicogenomic data facilitates the identification of deregulated gene patterns and maximizes health risk prediction in human. RESULTS: Here, we performed phenotypic anchoring on the effects of acute exposure to low-grade polluted groundwater using mouse and zebrafish. Also, we evaluated two windows of chronic exposure in mouse, starting in utero and at the end of lactation. Bioinformatic analysis of livers microarray data showed that the number of deregulated biofunctions and pathways is higher after acute exposure, compared to the chronic one. It also revealed specific profiles of altered gene expression in all treatments, pointing to stress response/mitochondrial pathways as major players of environmental toxicity. Of note, dysfunction of steroid hormones was also predicted by bioinformatic analysis and verified in both models by traditional approaches, serum estrogens measurement and vitellogenin mRNA determination in mice and zebrafish, respectively. CONCLUSIONS: In our report, phenotypic anchoring in two vertebrate model organisms highlights the toxicity of low-grade pollution, with varying susceptibility based on exposure window. The overlay of zebrafish and mice deregulated pathways, more than single genes, is useful in risk identification from chemicals implicated in the observed effects.


Subject(s)
Groundwater/chemistry , Phenotype , Toxicogenetics , Water Pollution/adverse effects , Animals , Biomarkers , Environmental Exposure/adverse effects , Female , Gene Expression , Gene Expression Profiling , Groundwater/analysis , Liver/drug effects , Liver/metabolism , Liver Function Tests , Male , Mice , Reproducibility of Results , Species Specificity , Time Factors , Toxicity Tests, Acute , Toxicity Tests, Chronic , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...