Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Colloids Surf B Biointerfaces ; 241: 114052, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38917667

ABSTRACT

Due to their resemblance to the fibrillar structure of the extracellular matrix, electrospun nanofibrous meshes are currently used as porous and mechanically stable scaffolds for cell culture. In this study, we propose an innovative methodology for growing peptide sequences directly onto the surface of electrospun nanofibers. To achieve this, electrospun fibers were produced from a poly(acrylic acid)/poly(vinyl alcohol) blend that was thermally crosslinked and subjected to a covalent coating of branched poly(ethylenimine). The exposed amino functionalities on the fiber surface were then used for the direct solid-phase synthesis of the RGD peptide sequence. In contrast to established strategies, mainly involving the grafting of pre-synthesized peptides onto the polymer chains before electrospinning or onto the nanofibers surface, this method allows for the concurrent synthesis and anchoring of peptides to the substrate, with potential applications in combinatorial chemistry. The incorporation of this integrin-binding motive significantly enhanced the nanofibers' ability to capture human cervical carcinoma (HeLa) cells, selected as a proof of concept to assess the functionalities of the developed material.

2.
J Colloid Interface Sci ; 663: 869-879, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447401

ABSTRACT

Over the last few decades, significant research efforts have been devoted to developing new cleaning systems aimed at preserving cultural heritage. One of the main objectives is to selectively remove aged or undesirable coatings from painted surfaces while preventing the cleaning solvent from permeating and engaging with the pictorial layers. In this work, we propose the use of electrospun polyamide 6,6 nonwovens in conjunction with a green solvent (dimethyl carbonate). By adjusting the electrospinning parameters, we produced three distinct nonwovens with varying average fiber diameters, ranging from 0.4 µm to 2 µm. These samples were characterized and tested for their efficacy in removing dammar varnish from painted surfaces. In particular, the cleaning process was monitored using macroscale PL (photoluminescence) imaging in real-time, while post-application examination of the mats was performed through scanning electron microscopy. The solvent evaporation rate from the different nonwovens was evaluated using gravimetric analysis and Proton Transfer Reaction- Time-of-Flight. It was observed that the application of the nonwovens with small or intermediate pore sizes for the removal of the terpenic varnish resulted in the swollen resin being absorbed into the mats, showcasing a peel-off effect. Thus, this protocol eliminates the need for further potentially detrimental removal procedures involving cotton swabs. The experimental data suggests that the peel-off effect relates to the microporosity of the mats, which enhances the capillary rise of the swollen varnish. Furthermore, the application of these systems to historical paintings underwent preliminary validation using a real painting from the 20th century.

3.
Heliyon ; 10(4): e25417, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38420388

ABSTRACT

Carbon dots (CDs) are promising photothermal nanoparticles that can be utilized in environmental treatments. They exhibit favorable physicochemical properties, including low toxicity, physical and chemical stability, photo-dependant reversible behaviour, and environmentally friendly synthesis using benign building blocks. Here, we synthesized innovative CDs/polylactic acid (PLA) electrospun composite membranes for evaluating the removal of hydrophobic compounds like long-chain hydrocarbons or oils in biphasic mixtures with water. The ultimate goal was to develop innovative and sustainable solar-heated oil absorbents. Specifically, we fabricated PLA membranes with varying CD contents, characterized their morphology, thermal, and mechanical properties, and assessed the environmental impact of membrane production according to ISO 14040 and 14044 standards in a preliminary "cradle-to-gate" life cycle assessment study. Solar radiation experiments demonstrated that the CDs/PLA composites exhibited greater uptake of hydrophobic compounds compared to pure PLA membranes, ascribable to the CDs-induced photothermal effect. The adsorption and regeneration capacity of the new CDs/PLA membrane was demonstrated through multiple uptake/release cycles. Ecotoxicity analyses confirmed the safety profile of the new adsorbent system towards freshwater microalgae, further emphasizing its potential as an environmentally friendly solution for the removal of hydrophobic compounds in water treatment processes.

4.
ACS Mater Au ; 3(5): 464-482, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-38089097

ABSTRACT

Cross-linking of poly(vinyl alcohol) (PVA) creates a three-dimensional network by bonding adjacent polymer chains. The cross-linked structure, upon immersion in water, turns into a hydrogel, which exhibits unique absorption properties due to the presence of hydrophilic groups within the PVA polymer chains and, simultaneously, ceases to be soluble in water. The properties of PVA can be adjusted by chemical modification or blending with other substances, such as polymers, e.g., conductive poly[3-(potassium-5-butanoate)thiophene-2,5-diyl] (P3KBT). In this work, PVA-based conductive semi-interpenetrating polymer networks (semi-IPNs) are successfully fabricated. The systems are obtained as a result of electrospinning of PVA/P3KBT precursor solutions with different polymer concentrations and then cross-linking using "green", environmentally safe methods. One approach consists of thermal treatment (H), while the second approach combines stabilization with ethanol and heating (E). The comprehensive characterization allows to evaluate the correlation between the cross-linking methods and properties of nanofibrous hydrogels. While both methods are successful, the cross-linking density is higher in the thermally cross-linked samples, resulting in lower conductivity and swelling ratio compared to the E-treated samples. Moreover, the H-cross-linked systems have better mechanical properties-lower stiffness and greater tensile strength. All the tested systems are biocompatible, and interestingly, due to the presence of P3KBT, they show photoresponsivity to solar radiation generated by the simulator. The results indicate that both methods of PVA cross-linking are highly effective and can be applied to a specific system depending on the target, e.g., biomedical or electronic applications.

5.
Biomacromolecules ; 24(3): 1366-1376, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36749903

ABSTRACT

The possibility of incorporating H2S slow-release donors inside biomimetic scaffolds can pave the way to new approaches in the field of tissue regeneration and anti-inflammatory treatment. In the present work, GYY4137, an easy-to-handle commercially available Lawesson's reagent derivative, has been successfully incorporated inside biomimetic silk fibroin-based electrospun scaffolds. Due to the instability of GYY4137 in the solvent needed to prepare silk fibroin solutions (formic acid), the electrospinning of the donor together with the silk fibroin turned out to be impossible. Therefore, a multilayer structure was realized, consisting of a PLGA mat containing GYY4137 sandwiched between two silk fibroin nanofibrous layers. Before their use in the multilayer scaffold, the silk fibroin mats were treated in ethanol to induce crystalline phase formation, which conferred water-resistance and biomimetic properties. The morphological, thermal, and chemical properties of the obtained scaffolds were thoroughly characterized by SEM, TGA, DSC, FTIR, and WAXD. Multilayer devices showing two different concentrations of the H2S donor, i.e., 2 and 5% w/w with respect to the weight of PLGA, were analyzed to study their H2S release and biological properties, and the results were compared with those of the sample not containing GYY4137. The H2S release analysis was carried out according to an "ad-hoc" designed procedure based on a validated high-performance liquid chromatography method. The proposed analytical approach demonstrated the slow-release kinetics of H2S from the multilayer scaffolds and its tunability by acting on the donor's concentration inside the PLGA nanofibers. Finally, the devices were tested in biological assays using bone marrow-derived mesenchymal stromal cells showing the capacity to support cell spreading throughout the scaffold and prevent cytotoxicity effects in serum starvation conditions. The resulting devices can be exploited for applications in the tissue engineering field since they combine the advantages of controlled H2S release kinetics and the biomimetic properties of silk fibroin nanofibers.


Subject(s)
Fibroins , Nanofibers , Fibroins/chemistry , Tissue Scaffolds/chemistry , Delayed-Action Preparations , Biomimetics , Tissue Engineering/methods , Nanofibers/chemistry , Silk
6.
Chem Commun (Camb) ; 59(11): 1465-1468, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36651351

ABSTRACT

The photophysical behaviour of phosphorescent rigidification-induced emission (RIE) dyes is highly affected by their micro- and nanoenvironment. The lifetime measure of RIE dyes dispersed in polymers represents an effective approach to gain valuable information on polymer free volume and thus develop materials potentially able to self-monitor physical ageing and mechanical stresses.

7.
Biomater Adv ; 144: 213231, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36495842

ABSTRACT

Reconstruction of gradient organic/inorganic tissues is a challenging task in orthopaedics. Indeed, to mimic tissue characteristics and stimulate bone regeneration at the interface, it is necessary to reproduce both the mineral and organic components of the tissue ECM, as well as the micro/nano-fibrous morphology. To address this goal, we propose here novel biomimetic patches obtained by the combination of electrospinning and nanostructured bone apatite. In particular, we deposited apatite on the electrospun fibers by Ionized Jet Deposition, a plasma-assisted technique that allows conformal deposition and the preservation in the coating of the target's stoichiometry. The damage to the substrate and fibrous morphology is a polymer-dependent aspect, that can be avoided by properly selecting the substrate composition and deposition parameters. In fact, all the tested polymers (poly(l-lactide), poly(D,l-lactide-co-glycolide, poly(ε-caprolactone), collagen) were effectively coated, and the morphological and thermal characterization revealed that poly(ε-caprolactone) suffered the least damage. The coating of collagen fibers, on the other hand, destroyed the fiber morphology and it could only be performed when collagen is blended with a more resistant synthetic polymer in the nanofibers. Due to the biomimetic composition and multiscale morphology from micro to nano, the poly(ε-caprolactone)-collagen biomimetic patches coated with bone apatite supported MSCs adhesion, patch colonization and early differentiation, while allowing optimal viability. The biomimetic coating allowed better scaffold colonization, promoting cell spreading on the fibers.


Subject(s)
Biomimetics , Durapatite , Durapatite/chemistry , Polyesters , Collagen/chemistry , Polymers , Apatites
8.
Int J Mol Sci ; 23(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35328661

ABSTRACT

In the clinical management of solid tumors, the possibility to successfully couple the regeneration of injured tissues with the elimination of residual tumor cells left after surgery could open doors to new therapeutic strategies. In this work, we present a composite hydrogel-electrospun nanofiber scaffold, showing a modular architecture for the delivery of two pharmaceutics with distinct release profiles, that is potentially suitable for local therapy and post-surgical treatment of solid soft tumors. The composite was obtained by coupling gelatin hydrogels to poly(ethylene oxide)/poly(butylene terephthalate) block copolymer nanofibers. Results of the scaffolds' characterization, together with the analysis of gelatin and drug release kinetics, displayed the possibility to modulate the device architecture to control the release kinetics of the drugs, also providing evidence of their activity. In vitro analyses were also performed using a human epithelioid sarcoma cell line. Furthermore, publicly available expression datasets were interrogated. Confocal imaging showcased the nontoxicity of these devices in vitro. ELISA assays confirmed a modulation of IL-10 inflammation-related cytokine supporting the role of this device in tissue repair. In silico analysis confirmed the role of IL-10 in solid tumors including 262 patients affected by sarcoma as a negative prognostic marker for overall survival. In conclusion, the developed modular composite device may provide a key-enabling technology for the treatment of soft tissue sarcoma.


Subject(s)
Nanofibers , Soft Tissue Neoplasms , Alkenes , Drug Delivery Systems , Ethylene Oxide , Gelatin , Humans , Hydrogels , Interleukin-10 , Oxides , Phthalic Acids , Polyesters , Polyethylene Glycols , Polyethylene Terephthalates , Tissue Engineering , Tissue Scaffolds
9.
Bioact Mater ; 11: 230-239, 2022 May.
Article in English | MEDLINE | ID: mdl-34977428

ABSTRACT

Electrospun fibers of shape memory triethoxysilane-terminated poly(epsilon-caprolactone) (PCL-TES) loaded with bioactive glasses (BG) are here presented. Unloaded PCL-TES, as well as PCL/BG nanocomposite fibers, are also considered for comparison. It is proposed that hydrolysis and condensation reactions take place between triethoxysilane groups of the polymer and the silanol groups at the BG particle surface, thus generating additional crosslinking points with respect to those present in the PCL-TES system. The as-spun PCL-TES/BG fibers display excellent shape memory properties, in terms of shape fixity and shape recovery ratios, without the need of a thermal crosslinking treatment. BG particles confer in vitro bioactivity to PCL-based nanocomposite fibers and favor the precipitation of hydroxycarbonate apatite on the fiber surface. Preliminary cytocompatibility tests demonstrate that the addition of BG particles to PCL-based polymer does not inhibit ST-2 cell viability. This novel approach of using bioactive glasses not only for their biological properties, but also for the enhancement of shape memory properties of PCL-based polymers, widens the versatility and suitability of the obtained composite fibers for a huge portfolio of biomedical applications.

10.
Macromol Rapid Commun ; 43(5): e2100694, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34962002

ABSTRACT

The recent burst of research on smart materials is a clear evidence of the growing interest of the scientific community, industry, and society in the field. The exploitation of the great potential of stimuli-responsive materials for sensing, actuation, logic, and control applications is favored and supported by new manufacturing technologies, such as electrospinning, that allows to endow smart materials with micro- and nanostructuration, thus opening up additional and unprecedented prospects. In this wide and lively scenario, this article systematically reviews the current advances in the development of thermoactive electrospun fibers and textiles, sorting them, according to their response to the thermal stimulus. Hence, several platforms including thermoresponsive systems, shape memory polymers, thermo-optically responsive systems, phase change materials, thermoelectric materials, and pyroelectric materials, are described and critically discussed. The difference in active species and outputs of the aforementioned categories is highlighted, evidencing the transversal nature of temperature stimulus. Moreover, the potential of novel thermoactive materials are pointed out, revealing how their development could take to utmost interesting achievements.


Subject(s)
Nanofibers , Temperature
11.
Small ; 18(1): e2104946, 2022 01.
Article in English | MEDLINE | ID: mdl-34755446

ABSTRACT

The removal of toxic and carcinogenic polycyclic aromatic hydrocarbons (PAHs) from water is one of the most intractable environmental problems nowadays, because of their resistance to remediation. This work introduces a highly efficient, regenerable membrane for the removal of PAHs from water, featuring excellent filter performance and pH-driven release, thanks to the integration of a cavitand receptor in electrospun polyacrylonitrile (PAN) fibers. The role of the cavitand receptor is to act as molecular gripper for the uptake/release of PAHs. To this purpose, the deep cavity cavitand BenzoQxCav is designed and synthetized and its molecular structure is elucidated via X-Ray diffraction. The removal efficiency of the new adsorbent material toward the 16 priority PAHs is demonstrated via GC-MS analyses at ng L-1 concentration. A removal efficiency in the 32%, to 99% range is obtained. The regeneration of the membrane is performed by exploiting the pH-driven conformational switching of the cavitand between the vase form, where the PAHs uptake takes place, to the kite one, where the PAHs release occurs. The absorbance and regeneration capability of the membrane are successfully tested in four uptake/release cycles and the morphological stability.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Ethers, Cyclic , Polycyclic Aromatic Hydrocarbons/analysis , Resorcinols , Water
12.
Int J Biol Macromol ; 191: 92-99, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34536471

ABSTRACT

Polyhydroxybutyrate (PHB) production by the cyanobacterium cf. Anabaena sp. was here studied by varying the medium composition and the carbon source used to induce mixotrophic growth conditions. The highest PHB productivity (0.06 gPHB gbiomass-1 d-1) was observed when cultivating cf. Anabaena sp. in phosphorus-free medium and in the presence of sodium acetate (5.0 g L-1 concentration), after an incubation period of 7 days. A content of 40% of PHB on biomass, a dry weight of 0.1 g L-1, and a photosynthetic efficiency equal to the control were obtained. The cyanobacterium was then grown on a larger scale (10 L) to evaluate the characteristics of the produced PHB in relation to the main composition of the biomass (the content of proteins, polysaccharides, and lipids): after an incubation period of 7 days, a content of 6% of lipids (52% of which as unsaturated fatty acids with 18 carbon atoms), 12% of polysaccharides, 28% of proteins, and 46% of PHB was reached. The extracted PHB had a molecular weight of 3 MDa and a PDI of 1.7. These promising results demonstrated that cf. Anabaena sp. can be included among the Cyanobacteria species able to produce polyhydroxyalkanoates (PHAs) either in photoautotrophic or mixotrophic conditions, especially when it is grown under phosphorus-free conditions.


Subject(s)
Anabaena/metabolism , Hydroxybutyrates/metabolism , Industrial Microbiology/methods , Polyesters/metabolism , Anabaena/growth & development , Biomass , Phosphorus/metabolism
13.
Small Methods ; 5(9): e2100402, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34514087

ABSTRACT

In recent years, the main quest of science has been the pioneering of the groundbreaking biomedical strategies needed for achieving a personalized medicine. Ribonucleic acids (RNAs) are outstanding bioactive macromolecules identified as pivotal actors in regulating a wide range of biochemical pathways. The ability to intimately control the cell fate and tissue activities makes RNA-based drugs the most fascinating family of bioactive agents. However, achieving a widespread application of RNA therapeutics in humans is still a challenging feat, due to both the instability of naked RNA and the presence of biological barriers aimed at hindering the entrance of RNA into cells. Recently, material scientists' enormous efforts have led to the development of various classes of nanostructured carriers customized to overcome these limitations. This work systematically reviews the current advances in developing the next generation of drugs based on nanotechnology-assisted RNA delivery. The features of the most used RNA molecules are presented, together with the development strategies and properties of nanostructured vehicles. Also provided is an in-depth overview of various therapeutic applications of the presented systems, including coronavirus disease vaccines and the newest trends in the field. Lastly, emerging challenges and future perspectives for nanotechnology-mediated RNA therapies are discussed.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19 Vaccines/therapeutic use , Drug Delivery Systems , Humans , Nanotechnology , Nucleic Acids/therapeutic use , Pharmaceutical Preparations , RNA/genetics
14.
Pharmaceutics ; 13(6)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201089

ABSTRACT

Vascular and traumatic injuries of the central nervous system are recognized as global health priorities. A polypharmacology approach that is able to simultaneously target several injury factors by the combination of agents having synergistic effects appears to be promising. Herein, we designed a polymeric delivery system loaded with two drugs, ibuprofen (Ibu) and thyroid hormone triiodothyronine (T3) to in vitro release the suitable amount of the anti-inflammation and the remyelination drug. As a production method, electrospinning technology was used. First, Ibu-loaded micro (diameter circa 0.95-1.20 µm) and nano (diameter circa 0.70 µm) fibers were produced using poly(l-lactide) PLLA and PLGA with different lactide/glycolide ratios (50:50, 75:25, and 85:15) to select the most suitable polymer and fiber diameter. Based on the in vitro release results and in-house knowledge, PLLA nanofibers (mean diameter = 580 ± 120 nm) loaded with both Ibu and T3 were then successfully produced by a co-axial electrospinning technique. The in vitro release studies demonstrated that the final Ibu/T3 PLLA system extended the release of both drugs for 14 days, providing the target sustained release. Finally, studies in cell cultures (RAW macrophages and neural stem cell-derived oligodendrocyte precursor cells-OPCs) demonstrated the anti-inflammatory and promyelinating efficacy of the dual drug-loaded delivery platform.

15.
Polymers (Basel) ; 13(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070820

ABSTRACT

New bio-based polymers capable of either outperforming fossil-based alternatives or possessing new properties and functionalities are of relevant interest in the framework of the circular economy. In this work, a novel bio-based polycarvone acrylate di-epoxide (PCADE) was used as an additive in a one-step straightforward electrospinning process to endow the fibres with functionalisable epoxy groups at their surface. To demonstrate the feasibility of the approach, poly(vinylidene fluoride) (PVDF) fibres loaded with different amounts of PCADE were prepared. A thorough characterisation by TGA, DSC, DMTA and XPS showed that the two polymers are immiscible and that PCADE preferentially segregates at the fibre surface, thus developing a very simple one-step approach to the preparation of ready-to-use surface functionalisable fibres. We demonstrated this by exploiting the epoxy groups at the PVDF fibre surface in two very different applications, namely in epoxy-based carbon fibre reinforced composites and membranes for ω-transaminase enzyme immobilisation for heterogeneous catalysis.

16.
Biomolecules ; 10(12)2020 11 30.
Article in English | MEDLINE | ID: mdl-33266333

ABSTRACT

In the field of artificial prostheses for damaged vessel replacement, polymeric scaffolds showing the right combination of mechanical performance, biocompatibility, and biodegradability are still demanded. In the present work, poly(butylene-co-triethylene trans-1,4-cyclohexanedicarboxylate), a biodegradable random aliphatic copolyester, has been synthesized and electrospun in form of aligned and random fibers properly designed for vascular applications. The obtained materials were analyzed through tensile and dynamic-mechanical tests, the latter performed under conditions simulating the mechanical contraction of vascular tissue. Furthermore, the in vitro biological characterization, in terms of hemocompatibility and cytocompatibility in static and dynamic conditions, was also carried out. The mechanical properties of the investigated scaffolds fit within the range of physiological properties for medium- and small-caliber blood vessels, and the aligned scaffolds displayed a strain-stiffening behavior typical of the blood vessels. Furthermore, all the produced scaffolds showed constant storage and loss moduli in the investigated timeframe (24 h), demonstrating the stability of the scaffolds under the applied conditions of mechanical deformation. The biological characterization highlighted that the mats showed high hemocompatibility and low probability of thrombus formation; finally, the cytocompatibility tests demonstrated that cyclic stretch of electrospun fibers increased endothelial cell activity and proliferation, in particular on aligned scaffolds.


Subject(s)
Cell Culture Techniques/methods , Elastomers/chemistry , Elastomers/pharmacology , Electricity , Endothelial Cells/cytology , Polyesters/chemistry , Polyethylene Glycols/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Endothelial Cells/drug effects , Humans , Materials Testing , Mechanotransduction, Cellular
17.
Article in English | MEDLINE | ID: mdl-32766220

ABSTRACT

Skeletal muscles are considered to date the best existing actuator in nature thanks to their hierarchical multiscale fibrous structure capable to enhance their strength and contractile performances. In recent years, driven by the growing of the soft robotics and tissue-engineering research field, many biomimetic soft actuators and scaffolds were designed by taking inspiration from the biological skeletal muscle. In this work we used the electrospinning technique to develop a hierarchically arranged nanofibrous structure resembling the morphology and passive biomechanical properties of skeletal muscles. To mimic the passive properties of muscle, a low-modulus polyurethane was used. Several electrospun structures (mats, bundles, and a muscle-like assembly) were produced with different internal 3D arrangements of the nanofibers. A thermal characterization through thermogravimetric and differential scanning calorimetry analysis investigated the physico-chemical properties of the material. The multiscale morphological similarities with the biological counterpart were verified by means of scanning electron microscopy investigation. The tensile tests on the different electrospun samples revealed that the muscle-like assembly presented slightly higher strength and stiffness compared to the skeletal muscle ones. Moreover, mathematical models of the mechanical behavior of the nanofibrous structures were successfully developed, allowing to better investigate the relationships between structure and mechanics of the samples. The promising results suggest the suitability of this hierarchical electrospun nanofibrous structure for applications in regenerative medicine and, if combined with active materials, in soft actuators for robotic.

18.
ACS Appl Mater Interfaces ; 12(35): 39620-39629, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32820898

ABSTRACT

Hydrogels and organogels are widely used as cleaning materials, especially when a controlled solvent release is necessary to prevent substrate damage. This situation is often encountered in the personal care and electronic components fields and represents a challenge in restoration, where the removal of a thin layer of aged varnish from a painting may compromise the integrity of the painting itself. There is an urgent need for new and effective cleaning materials capable of controlling and limiting the use of solvents, achieving at the same time high cleaning efficacy. In this paper, new sandwich-like composites that fully address these requirements are developed by using an organogel (poly(3-hydroxybutyrate) + γ-valerolactone) in the core and two external layers of electrospun nonwovens made of continuous submicrometric fibers produced by electrospinning (either poly(vinyl alcohol) or polyamide 6,6). The new composite materials exhibit an extremely efficient cleaning action that results in the complete elimination of the varnish layer with a minimal amount of solvent adsorbed by the painting layer after the treatment. This demonstrates that the combined materials exert a superficial action that is of utmost importance to safeguard the painting. Moreover, we found that the electrospun nonwoven layers act as mechanically reinforcement components, greatly improving the bending resistance of organogels and their handling. The characterization of these innovative cleaning materials allowed us to propose a mechanism to explain their action: electrospun fibers play the leading role by slowing down the diffusion of the solvent and by conferring to the entire composite a microstructured rough superficial morphology, enabling to achieve outstanding cleaning performance.

19.
Mater Sci Eng C Mater Biol Appl ; 113: 110998, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32487406

ABSTRACT

Silver-based nanomaterials are used as antibacterial agents in a number of applications, including wound dressing, where electrospun materials can effectively promote wound healing and tissue regeneration thanks to their biomimicry, flexibility and breathability. Incorporation of such nanomaterials in electrospun nonwovens is highly challenging if aiming at maximizing stability and antibacterial efficacy and minimizing silver detachment, without neglecting process straightforwardness and scalability. In this work nanostructured silver coatings were deposited by Ionized Jet Deposition (IJD) on Polylactic acid, a medical grade polyester-urethane and Polyamide 6,6 nanofibers. The resulting materials were thoroughly characterized to gain an in-depth view of coating morphology and substrate resistance to the low-temperature deposition process used. Morphology of silver coatings with well-cohesive grains having dimensions from a few tens to a few hundreds of nanometers was analyzed by SEM, TEM and AFM. TGA, DSC, FTIR and GPC showed that the polymers well withstand the deposition process with negligible effects on their properties, the only exception being the polylactic acid that resulted more susceptible to degradation. Finally, the efficacy against S. aureus and E. coli bacterial strains was demonstrated, indicating that electrospun fibers decorated with nanostructured silver by IJD represent a breakthrough solution in the field of antibacterial devices.


Subject(s)
Anti-Bacterial Agents/chemistry , Nanofibers/chemistry , Nanostructures/chemistry , Polymers/chemistry , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Caprolactam/analogs & derivatives , Caprolactam/chemistry , Disk Diffusion Antimicrobial Tests , Escherichia coli/drug effects , Nanostructures/toxicity , Polyesters/chemistry , Staphylococcus aureus/drug effects
20.
ACS Appl Mater Interfaces ; 12(23): 26320-26329, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32406678

ABSTRACT

Realizing active, light-emitting fibers made of conjugated polymers by the electrospinning method is generally challenging. Electrospinning of plasma-treated conjugated polymer solutions is here developed for the production of light-emitting microfibers and nanofibers. Active fibers from conjugated polymer solutions rapidly processed by a cold atmospheric argon plasma are electrospun in an effective way, and they show a smoother surface and bead-less morphology, as well as preserved optical properties in terms of absorption, emission, and photoluminescence quantum yield. In addition, the polarization of emitted light and more notably photon waveguiding along the length of individual fibers are remarkably enhanced by electrospinning plasma-treated solutions. These properties come from a synergetic combination of favorable intermolecular coupling in the solutions, increased order of macromolecules on the nanoscale, and resulting fiber morphology. Such findings make the coupling of the electrospinning method and cold atmospheric plasma processing on conjugated polymer solutions a highly promising and possibly general route to generate light-emitting and conductive micro- and nanostructures for organic photonics and electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...