Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 32(12): 108170, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32966787

ABSTRACT

The replication cycle and pathogenesis of the Plasmodium malarial parasite involves rapid expansion in red blood cells (RBCs), and variants of certain RBC-specific proteins protect against malaria in humans. In RBCs, bisphosphoglycerate mutase (BPGM) acts as a key allosteric regulator of hemoglobin/oxyhemoglobin. We demonstrate here that a loss-of-function mutation in the murine Bpgm (BpgmL166P) gene confers protection against both Plasmodium-induced cerebral malaria and blood-stage malaria. The malaria protection seen in BpgmL166P mutant mice is associated with reduced blood parasitemia levels, milder clinical symptoms, and increased survival. The protective effect of BpgmL166P involves a dual mechanism that enhances the host's stress erythroid response to Plasmodium-driven RBC loss and simultaneously alters the intracellular milieu of the RBCs, including increased oxyhemoglobin and reduced energy metabolism, reducing Plasmodium maturation, and replication. Overall, our study highlights the importance of BPGM as a regulator of hemoglobin/oxyhemoglobin in malaria pathogenesis and suggests a new potential malaria therapeutic target.


Subject(s)
Anemia/etiology , Anemia/prevention & control , Bisphosphoglycerate Mutase/deficiency , Malaria, Cerebral/enzymology , Malaria, Cerebral/prevention & control , Amino Acid Sequence , Amino Acid Substitution , Animals , Base Sequence , Bisphosphoglycerate Mutase/chemistry , Bisphosphoglycerate Mutase/genetics , Bisphosphoglycerate Mutase/metabolism , Enzyme Stability , Erythrocytes/enzymology , Erythrocytes/parasitology , Erythropoiesis , Extracellular Matrix/metabolism , Female , HEK293 Cells , Humans , Malaria, Cerebral/complications , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation/genetics , Parasites/growth & development , Plasmodium/growth & development , Polycythemia
2.
PLoS One ; 10(12): e0144555, 2015.
Article in English | MEDLINE | ID: mdl-26658699

ABSTRACT

Pyruvate kinase (PKLR) is a critical erythrocyte enzyme that is required for glycolysis and production of ATP. We have shown that Pklr deficiency in mice reduces the severity (reduced parasitemia, increased survival) of blood stage malaria induced by infection with Plasmodium chabaudi AS. Likewise, studies in human erythrocytes infected ex vivo with P. falciparum show that presence of host PK-deficiency alleles reduces infection phenotypes. We have characterized the genetic diversity of the PKLR gene, including haplotype structure and presence of rare coding variants in two populations from malaria endemic areas of Thailand and Senegal. We investigated the effect of PKLR genotypes on rich longitudinal datasets including haematological and malaria-associated phenotypes. A coding and possibly damaging variant (R41Q) was identified in the Thai population with a minor allele frequency of ~4.7%. Arginine 41 (R41) is highly conserved in the pyruvate kinase family and its substitution to Glutamine (R41Q) affects protein stability. Heterozygosity for R41Q is shown to be associated with a significant reduction in the number of attacks with Plasmodium falciparum, while correlating with an increased number of Plasmodium vivax infections. These results strongly suggest that PKLR protein variants may affect the frequency, and the intensity of malaria episodes induced by different Plasmodium parasites in humans living in areas of endemic malaria.


Subject(s)
Malaria, Falciparum/genetics , Malaria, Vivax/genetics , Malaria/genetics , Parasitemia/genetics , Phenotype , Pyruvate Kinase/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Base Sequence , Disease Susceptibility , Erythrocytes/enzymology , Erythrocytes/parasitology , Gene Expression , Genotype , Humans , Malaria/enzymology , Malaria/pathology , Malaria, Falciparum/enzymology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/pathology , Malaria, Vivax/enzymology , Malaria, Vivax/epidemiology , Malaria, Vivax/pathology , Mice , Mice, Knockout , Parasitemia/enzymology , Parasitemia/epidemiology , Parasitemia/pathology , Plasmodium chabaudi/physiology , Plasmodium falciparum/physiology , Plasmodium vivax/physiology , Polymorphism, Single Nucleotide , Protein Stability , Pyruvate Kinase/chemistry , Pyruvate Kinase/metabolism , Senegal/epidemiology , Sequence Alignment , Severity of Illness Index , Thailand/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...