Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38975892

ABSTRACT

Understanding the biological functions and processes of genes, particularly those not yet characterized, is crucial for advancing molecular biology and identifying therapeutic targets. The hypothesis guiding this study is that the 3D proximity of genes correlates with their functional interactions and relevance in prokaryotes. We introduced 3D-GeneNet, an innovative software tool that utilizes high-throughput sequencing data from chromosome conformation capture techniques and integrates topological metrics to construct gene association networks. Through a series of comparative analyses focused on spatial versus linear distances, we explored various dimensions such as topological structure, functional enrichment levels, distribution patterns of linear distances among gene pairs, and the area under the receiver operating characteristic curve by utilizing model organism Escherichia coli K-12. Furthermore, 3D-GeneNet was shown to maintain good accuracy compared to multiple algorithms (neighbourhood, co-occurrence, coexpression, and fusion) across multiple bacteria, including E. coli, Brucella abortus, and Vibrio cholerae. In addition, the accuracy of 3D-GeneNet's prediction of long-distance gene interactions was identified by bacterial two-hybrid assays on E. coli K-12 MG1655, where 3D-GeneNet not only increased the accuracy of linear genomic distance tripled but also achieved 60% accuracy by running alone. Finally, it can be concluded that the applicability of 3D-GeneNet will extend to various bacterial forms, including Gram-negative, Gram-positive, single-, and multi-chromosomal bacteria through Hi-C sequencing and analysis. Such findings highlight the broad applicability and significant promise of this method in the realm of gene association network. 3D-GeneNet is freely accessible at https://github.com/gaoyuanccc/3D-GeneNet.


Subject(s)
Gene Regulatory Networks , Software , Algorithms , Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Escherichia coli K12/genetics , Escherichia coli K12/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
2.
Viruses ; 16(4)2024 04 14.
Article in English | MEDLINE | ID: mdl-38675947

ABSTRACT

Tibetan pig is a geographically isolated pig breed that inhabits high-altitude areas of the Qinghai-Tibetan plateau. At present, there is limited research on viral diseases in Tibetan pigs. This study provides a novel metagenomic exploration of the gut virome in Tibetan pigs (altitude ≈ 3000 m) across three critical developmental stages, including lactation, nursery, and fattening. The composition of viral communities in the Tibetan pig intestine, with a dominant presence of Microviridae phages observed across all stages of development, in combination with the previous literature, suggest that it may be associated with geographical locations with high altitude. Functional annotation of viral operational taxonomic units (vOTUs) highlights that, among the constantly increasing vOTUs groups, the adaptability of viruses to environmental stressors such as salt and heat indicates an evolutionary response to high-altitude conditions. It shows that the lactation group has more abundant viral auxiliary metabolic genes (vAMGs) than the nursery and fattening groups. During the nursery and fattening stages, this leaves only DNMT1 at a high level. which may be a contributing factor in promoting gut health. The study found that viruses preferentially adopt lytic lifestyles at all three developmental stages. These findings not only elucidate the dynamic interplay between the gut virome and host development, offering novel insights into the virome ecology of Tibetan pigs and their adaptation to high-altitude environments, but also provide a theoretical basis for further studies on pig production and epidemic prevention under extreme environmental conditions.


Subject(s)
Altitude , Gastrointestinal Microbiome , Metagenomics , Virome , Animals , Swine , Virome/genetics , Gastrointestinal Microbiome/genetics , Tibet , Viruses/genetics , Viruses/classification , Metagenome , Female , Genome, Viral
3.
Virus Evol ; 10(1): veae005, 2024.
Article in English | MEDLINE | ID: mdl-38361823

ABSTRACT

Understanding phylogenetic relationships among species is essential for many biological studies, which call for an accurate phylogenetic tree to understand major evolutionary transitions. The phylogenetic analyses present a major challenge in estimation accuracy and computational efficiency, especially recently facing a wave of severe emerging infectious disease outbreaks. Here, we introduced a novel, efficient framework called Bases-dependent Rapid Phylogenetic Clustering (Bd-RPC) for new sample placement for viruses. In this study, a brand-new recoding method called Frequency Vector Recoding was implemented to approximate the phylogenetic distance, and the Phylogenetic Simulated Annealing Search algorithm was developed to match the recoded distance matrix with the phylogenetic tree. Meanwhile, the indel (insertion/deletion) was heuristically introduced to foreign sequence recognition for the first time. Here, we compared the Bd-RPC with the recent placement software (PAGAN2, EPA-ng, TreeBeST) and evaluated it in Alphacoronavirus, Alphaherpesvirinae, and Betacoronavirus by using Split and Robinson-Foulds distances. The comparisons showed that Bd-RPC maintained the highest precision with great efficiency, demonstrating good performance in new sample placement on all three virus genera. Finally, a user-friendly website (http://www.bd-rpc.xyz) is available for users to classify new samples instantly and facilitate exploration of the phylogenetic research in viruses, and the Bd-RPC is available on GitHub (http://github.com/Bin-Ma/bd-rpc).

4.
Virulence ; 14(1): 2171636, 2023 12.
Article in English | MEDLINE | ID: mdl-36694280

ABSTRACT

Haemophilus parasuis (H. parasuis) causes exudative inflammation, implying endothelial dysfunction during pathogen infection. However, so far, the molecular mechanism of endothelial dysfunction caused by H. parasuis has not been clarified. By using the transwell-based cell co-culture system, we demonstrate that knocking out resistin in porcine alveolar macrophages (PAMs) dramatically attenuated endothelial monolayer damage caused by H. parasuis. The resistin secreted by PAMs inhibited the expression of the tight junction proteins claudin-5 and occludin rather than the adherens junction protein VE-cadherin in co-cultured porcine aortic endothelial cells (PAECs). Furthermore, we demonstrate that resistin regulated claudin-5 and occludin expression and monolayer PAEC permeability in an LKB1/AMPK/mTOR pathway-dependent manner. Additionally, we reveal that the outer membrane lipoprotein gene lppA in H. parasuis induced resistin expression in PAMs, as deleting lppA reduced resistin expression in H. parasuis-infected PAMs, causing a significant change in LKB1/AMPK/mTOR pathway activity in co-cultured PAECs, thereby restoring tight junction protein levels and endothelial monolayer permeability. Thus, we postulate that the H. parasuis lppA gene enhances resistin production in PAMs, disrupting tight junctions in PAECs and causing endothelial barrier dysfunction. These findings elucidate the pathogenic mechanism of exudative inflammation caused by H. parasuis for the first time and provide a more profound angle of acute exudative inflammation caused by bacteria.


Subject(s)
Haemophilus Infections , Haemophilus parasuis , Swine , Animals , Macrophages, Alveolar/microbiology , Haemophilus parasuis/genetics , Endothelial Cells , Resistin/genetics , Resistin/metabolism , AMP-Activated Protein Kinases/metabolism , Claudin-5/metabolism , Occludin/metabolism , Haemophilus Infections/veterinary , Haemophilus Infections/microbiology , Inflammation , TOR Serine-Threonine Kinases/metabolism
5.
Dev Comp Immunol ; 102: 103474, 2020 01.
Article in English | MEDLINE | ID: mdl-31437526

ABSTRACT

Tyrosine kinase 2 (TYK2), a member of Janus kinase family, has been identified as a crucial protein in signal transduction initiated by interferons or interleukins in mammals. However, the function of avian TYK2 in innate immune response remains largely unknown. In this study, the full-length duck TYK2 (duTYK2) cDNA was cloned for the first time, which encoded a putative protein of 1187 amino acid residues and showed the high sequence similarity with bald eagle, crested ibis, and white-tailed tropicbird TYK2s. The duTYK2 was widely expressed in all examined tissues of healthy ducks and showed diffuse cytoplasmic localization in duck embryo fibroblasts (DEFs). Overexpression of duTYK2 significantly enhanced ISRE promoter activity and induced the expression of viperin, PKR, 2',5'-OAS, Mx and ZAP in DEFs. The C-terminal kinase domain of duTYK2 is essential for duTYK2-mediated ISRE promoter activation. Furthermore, knockdown of duTYK2 dramatically decreased duck Tembusu virus (DTMUV)-, duck enteritis virus (DEV)-, poly(I:C)- or poly(dA:dT)-induced ISRE promoter activation. Additionally, duTYK2 expression exhibited antiviral activity against DTMUV. These results indicated that duTYK2 played a critical role in duck antiviral innate immunity.


Subject(s)
Avian Proteins/metabolism , Ducks/immunology , TYK2 Kinase/metabolism , Amino Acid Sequence , Animals , Antiviral Agents/metabolism , Avian Proteins/chemistry , Avian Proteins/genetics , Bird Diseases/immunology , Bird Diseases/virology , Cell Line , Cloning, Molecular , Cytoplasm/metabolism , Ducks/virology , Flavivirus/immunology , Gene Expression Regulation , Immunity, Innate , Interferons/metabolism , Phylogeny , Promoter Regions, Genetic , Sequence Alignment , Signal Transduction/genetics , Signal Transduction/immunology , TYK2 Kinase/chemistry , TYK2 Kinase/genetics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...