Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Stem Cells Dev ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38770820

ABSTRACT

With the postponement of the reproductive age of women, the difficulty of embryo implantation caused by uterine aging has become a key factor restricting fertility. However, there are few studies on protective interventions for naturally aging uteri. Although many factors cause uterine aging, such as oxidative stress (OS), inflammation, and fibrosis, their impact on uterine function manifests as reduced endometrial receptivity. This study aimed to use a combination of human umbilical cord mesenchymal stem cells (hUC-MSCs) and dehydroepiandrosterone (DHEA) to delay uterine aging. The results showed that the combined treatment of hUC-MSCs + DHEA increased the number of uterine glandular bodies and the thickness of the endometrium while inhibiting the senescence of endometrial epithelial cells. This combined treatment alleviates the expression of OS (reactive oxygen species, superoxide dismutase, and GSH-PX) and proinflammatory factors (interleukin [IL]-1, IL6, IL-18, and tumor necrosis factor-α) in the uterus, delaying the aging process. The combined treatment of hUC-MSCs + DHEA alleviated the abnormal hormone response of the endometrium, inhibited excessive accumulation and fibrosis of uterine collagen, and upregulated uterine estrogen and progesterone receptors through the PI3K/AKT/mTOR pathway. This study suggests that uterine aging can be delayed through hUC-MSCs + DHEA combination therapy, providing a new treatment method for uterine aging.

2.
J Cell Physiol ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704705

ABSTRACT

Spontaneous abortion is the most common complication in early pregnancy, the exact etiology of most cases cannot be determined. Emerging studies suggest that mutations in ciliary genes may be associated with progression of pregnancy loss. However, the involvement of primary cilia on spontaneous abortion and the underlying molecular mechanisms remains poorly understood. We observed the number and length of primary cilia were significantly decreased in decidua of spontaneous abortion in human and lipopolysaccharide (LPS)-induced abortion mice model, accompanied with increased expression of proinflammatory cytokines interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. The length of primary cilia in human endometrial stromal cell (hESC) was significantly shortened after TNF-α treatment. Knocking down intraflagellar transport 88 (IFT88), involved in cilia formation and maintenance, promoted the expression of TNF-α. There was a reverse regulatory relationship between cilia shortening and TNF-α expression. Further research found that shortened cilia impair decidualization in hESC through transforming growth factor (TGF)-ß/SMAD2/3 signaling. Primary cilia were impaired in decidua tissue of spontaneous abortion, which might be mainly caused by inflammatory injury. Primary cilia abnormalities resulted in dysregulation of TGF-ß/SMAD2/3 signaling transduction and decidualization impairment, which led to spontaneous abortion.

3.
Sci Rep ; 13(1): 9232, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286763

ABSTRACT

Although bisphenol S (BPS), as a bisphenol A (BPA) substitute, has been widely used in the commodity, it is embryotoxic in recent experiments. Nowadays, it remains unclear how BPS affects preimplantation embryos. Here, my team investigated the effects of BPS on preimplantation embryos and the possible molecular mechanisms in mice. The results showed that 10-6 mol/L BPS exposure delayed the blastocysts stage, and exposure to 10-4 mol/L BPS induced 2-cell block in mice preimplantation embryos. A significant increase in reactive oxygen species (ROS) level and antioxidant enzyme genes Sod1, Gpx1, Gpx6, and Prdx2 expression were shown, but the level of apoptosis was normal in 2-cell blocked embryos. Further experiments demonstrated that embryonic genome activation (EGA) specific genes Hsp70.1 and Hsc70 were significantly decreased, which implied that ROS and EGA activation have the potential to block 2-cell development. Antioxidant enzymes, including superoxide dismutase (SOD), coenzyme Q10 (CoQ10), and folic acid (FA) were used to further explore the roles of ROS and EGA in 2-cell block. Only 1200 U/mL SOD was found to alleviate the phenomenon of 2-cell block, reduce oxidative damage, and restore the expression of EGA-specific genes Hsp70.1 and Hsc70. Conclusively, this study demonstrates for the first time that BPS can induce 2-cell block, which is mainly mediated by ROS aggregation and results in the failure of EGA activation.


Subject(s)
Antioxidants , Oxidative Stress , Mice , Animals , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Blastocyst/metabolism , Superoxide Dismutase/metabolism , Benzhydryl Compounds/pharmacology , Embryonic Development/genetics
4.
Front Endocrinol (Lausanne) ; 13: 917386, 2022.
Article in English | MEDLINE | ID: mdl-35909537

ABSTRACT

Gestational diabetes mellitus (GDM), the most common medical pregnancy complication, has become a growing problem. More and more studies have shown that microRNAs are closely related to metabolic processes. The purpose of this paper is to investigate the role of up-regulation of miR-199a-5p expression in GDM. We found that miR-199a-5p was significantly up-regulated in the placenta of GDM patients compared with normal pregnant women, and expressed in placental villi. miR-199a-5p can regulate the glucose pathway by inhibiting the expression of methyl CpG-binding protein 2 (MeCP2) and down-regulating canonical transient receptor potential 3 (Trpc3). This suggests that miR-199a-5p may regulate the glucose pathway by regulating methylation levels, leading to the occurrence of GDM.


Subject(s)
Diabetes, Gestational , MicroRNAs , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , Female , Glucose/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , Pregnancy , Up-Regulation
5.
Regen Biomater ; 9: rbac016, 2022.
Article in English | MEDLINE | ID: mdl-35480860

ABSTRACT

Endometrial injury can cause intrauterine adhesions (IUA) and induce the formation of endometrial fibrosis, leading to infertility and miscarriage. At present, there is no effective treatment method for severe IUA and uterine basal injury with adhesion area larger than one-third of the uterus. In this study, we prepared FGF1 silk sericin hydrogel material (FGF1-SS hydrogel) to treat endometrial injury and prevent endometrial fibrosis. Compared with the silk sericin hydrogel material (WT-SS hydrogel), FGF1-SS hydrogel significantly promotes the cell migration and infiltration ability of endometrial stromal cells (ESCs). More importantly, FGF1-SS hydrogel can release FGF1 stably for a long time and inhibit the ESCs injury model forms fibrosis through the TGF-ß/Smad pathway. In the IUA rat model, FGF1-SS hydrogel treatment effectively restored the number of uterine glands and uterine wall thickness in rats, with a fertility rate of 65.1% ± 6.4%. The results show that FGF1-SS hydrogel is expected to be a candidate to prevent IUA.

6.
Sci Rep ; 12(1): 412, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013490

ABSTRACT

The endometrium plays a critical role in embryo implantation and pregnancy, and a thin uterus is recognized as a key factor in embryo implantation failure. Umbilical cord mesenchymal stem cells (UC-MSCs) have attracted interest for the repair of intrauterine adhesions. The current study investigated the repair of thin endometrium in rats using the UC-MSCs and the mechanisms involved. Rats were injected with 95% ethanol to establish a model of thin endometrium. The rats were randomly divided into normal, sham, model, and UC-MSCs groups. Endometrial morphological alterations were observed by hematoxylin-eosin staining and Masson staining, and functional restoration was assessed by testing embryo implantation. The interaction between UC-MSCs and rat endometrial stromal cells (ESCs) was evaluated using a transwell 3D model and immunocytochemistry. Microarray mRNA and miRNA platforms were used for miRNA-mRNA expression profiling. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses were performed to identify the biological processes, molecular functions, cellular components, and pathways of endometrial injury and UC-MSCs transplantation repair and real-time quantitative reverse transcription PCR (qRT-PCR) was performed to further identify the expression changes of key molecules in the pathways. Endometrium thickness, number of glands, and the embryo implantation numbers were improved, and the degree of fibrosis was significantly alleviated by UC-MSCs treatment in the rat model of thin endometrium. In vitro cell experiments showed that UC-MSCs migrated to injured ESCs and enhanced their proliferation. miRNA microarray chip results showed that expression of 45 miRNAs was downregulated in the injured endometrium and upregulated after UC-MSCs transplantation. Likewise, expression of 39 miRNAs was upregulated in the injured endometrium and downregulated after UC-MSCs transplantation. The miRNA-mRNA interactions showed the changes in the miRNA and mRNA network during the processes of endometrial injury and repair. GO and KEGG analyses showed that the process of endometrial injury was mainly attributed to the decomposition of the extracellular matrix (ECM), protein degradation and absorption, and accompanying inflammation. The process of UC-MSCs transplantation and repair were accompanied by the reconstruction of the ECM, regulation of chemokines and inflammation, and cell proliferation and apoptosis. The key molecules involved in ECM-receptor interaction pathways were further verified by qRT-PCR. Itga1 and Thbs expression decreased in the model group and increased by UC-MSCs transplantation, while Laminin and Collagen expression increased in both the model group and MSCs group, with greater expression observed in the latter. This study showed that UC-MSCs transplantation could promote recovery of thin endometrial morphology and function. Furthermore, it revealed the expression changes of miRNA and mRNA after endometrial injury and UC-MSCs transplantation repair processed, and signaling pathways that may be involved in endometrial injury and repair.


Subject(s)
Cell Proliferation , Cord Blood Stem Cell Transplantation , Endometrium/pathology , Extracellular Matrix/pathology , Regeneration , Uterine Diseases/surgery , Animals , Cell Communication , Cell Culture Techniques, Three Dimensional , Cells, Cultured , Disease Models, Animal , Endometrium/metabolism , Endometrium/physiopathology , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Fetal Blood/cytology , Gene Expression Regulation , Gene Regulatory Networks , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Rats, Sprague-Dawley , Signal Transduction , Transcriptome , Uterine Diseases/metabolism , Uterine Diseases/pathology , Uterine Diseases/physiopathology
7.
J Ovarian Res ; 14(1): 119, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34526090

ABSTRACT

BACKGROUND: Currently, there is no effective treatment for premature ovarian failure (POF), and stem cell therapy is considered the most promising treatment. Human umbilical cord blood mesenchymal stem cells (hUC-MSCs) have shown good regenerative ability in various diseases, including POF; however, their underlying mechanism and dosage for POF treatment remain unclear. This study aimed to compare the effect of single and multiple injections of hUC-MSCs on ovarian function repair in chemotherapy-induced POF. METHODS: Female mice were intraperitoneally injected with 30 mg/kg busulfan and 120 mg/kg cyclophosphamide (CTX) to induce POF. In the single hUC-MSC injection group, hUC-MSCs were transplanted into mice D7 after CTX and busulfan administration, while in the multiple injection group, hUC-MSCs were transplanted on D7, D14, and D21 after CTX and busulfan administration. We evaluated the ovarian morphology, fertility, follicle-stimulating hormone and estradiol concentrations, follicle count, POF model, and cell transplantation results. In addition, real-time polymerase chain reaction, immunohistochemistry, and miRNA and mRNA chips were used to evaluate the effect of the cell therapy. RESULTS: Ovary size, number of follicle at all developmental stages, and fertility were significantly reduced in the POF group compared with the control. Under hUC-MSC treatment, the ovarian morphology and follicle count were significantly restored, and fertility was significantly increased. By comparing the single and multiple hUC-MSC injection groups, we found that the anti-Müllerian hormone and Ki-67 levels were significantly increased in the multiple hUC-MSC group on D60 after chemotherapy. The expression of stimulating hormone receptors, inhibin α, and inhibin ß was significantly restored, and the therapeutic effect was superior to that of the single hUC-MSC injection group. CONCLUSION: These results indicate that hUC-MSCs can restore the structure of injured ovarian tissue and its function in chemotherapy-induced POF mice and ameliorate fertility. Multiple hUC-MSC transplantations have a better effect on the recovery of ovarian function than single hUC-MSC transplantation in POF.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Primary Ovarian Insufficiency/therapy , Umbilical Cord/cytology , Animals , Disease Models, Animal , Female , Mice , Ovarian Follicle/parasitology , Ovarian Follicle/pathology , Primary Ovarian Insufficiency/pathology
8.
Diabetes Metab Syndr Obes ; 13: 3009-3034, 2020.
Article in English | MEDLINE | ID: mdl-32943895

ABSTRACT

PURPOSE: This study aimed to investigate the role of miR-21 expression in the reduction of placental function in GDM patients. MATERIALS AND METHODS: qRT-PCR was used to detect the differential expression of miR-21 in the serum of gestational diabetes mellitus (GDM) and normal pregnant women, and to verify the functional target gene PPAR-α of miR-21 by double fluorescence experiments. Cellular experiments were performed to verify the effect of PPAR-α on cell function. RESULTS: miR-21 is down-regulated in the serum and placenta of GDM patients compared to normal pregnant women. In the case of insulin resistance, miR-21-5p knockdown promoted glucose uptake, but no significant effect was found under physiological condition. Functional studies have shown that reduced PPAR-α expression can restore miR-21 knockdown-mediated cell growth and metastasis inhibition. Additionally, decreased expression of miR-21 but increased expression of -PPAR-α was observed in patients with GDM and GDM rats. CONCLUSION: The expression of the placental miR-21-5p, which inhibits cell growth and infiltration by up-regulating PPAR-α, is downregulated in pregnant GDM patients, which in turn may affect the placental function.

9.
Am J Transl Res ; 12(5): 1928-1941, 2020.
Article in English | MEDLINE | ID: mdl-32509188

ABSTRACT

Rs11614913 in pri-miR-196a-2 is involved in the occurrence of many diseases, especially in cancers. However, it remains unknown whether miR-196a-2 is associated with human recurrent spontaneous abortion (RSA) in Chinese Han population. Our study found that rs11614913 T/T in pri-miR-196a-2 was associated with the increase risk of human unexplained RSA (URSA) in recessive mode in Chinese Han population. The T allele of rs11614913 increased the production of mature miR-196a-3p. Rs11614913 T/T inhibited HTR-8/SVneo cells proliferation and migration and promoted cells apoptosis. Further investigation discovered that dihydrofolate reductase (DHFR) was the target of miR-196a-3p and inversely regulated by miR-196a-3p. Dual-luciferase assay indicated that T allele in miR-196a-2 rs11614913 could more effectively suppress DHFR expression than C allele. In addition, C to T substitution in miR-196a-2 rs11614913 attenuated the sensibility of cells to mifepristone. Collectively, our data suggest that miR-196a-2 rs11614913 T/T in pri-miR-196a-2 may be conductive to the genetic predisposition to RSA by disrupting the production of mature miR-196a-3p and reinforcing the expression of DHFR.

10.
Article in English | MEDLINE | ID: mdl-32296392

ABSTRACT

Gestational diabetes mellitus (GDM) is a disease that changes the function of microvascular of placenta. MicroRNA (miRNA) expression in placenta may contribute to the pathogenesis of GDM. Here, we evaluate the role and function of miR-29b in the development of GDM. This study discovered that miR-29b expression was lower in placentas derived from patients with GDM than that in control placentas. MiR-29b over-expression inhibited cell growth and migration, and miR-29b knockdown promoted cell migration. Then we predicted and confirmed that HIF3A was a direct target of miR-29b with two specific binding sites at the recognition sequences of miR-29b in 3'-UTR of HIF3A mRNA, which was negatively correlated with miR-29b expression level. The up-regulation of HIF3A partially antagonized the inhibitory effect of miR-29b over-expression on cell growth and migration. The enhancement of cell migration induced by miR-29b knockdown was attenuated by down-regulating HIF3A. These results imply that down-regulation of miR-29b may be related with the development of GDM partially via increasing the expression of HIF3A, which may provide a new insight for the mechanism of GDM.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Diabetes, Gestational/genetics , MicroRNAs/genetics , Placentation/genetics , Repressor Proteins/genetics , Trophoblasts/physiology , Adult , Apoptosis/genetics , Case-Control Studies , Cell Adhesion/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Diabetes, Gestational/pathology , Down-Regulation/genetics , Female , Gene Expression Regulation/genetics , HEK293 Cells , HeLa Cells , Humans , MicroRNAs/physiology , Placenta/metabolism , Placenta/pathology , Pregnancy , Signal Transduction/genetics , Trophoblasts/metabolism , Trophoblasts/pathology , Young Adult
11.
Stem Cell Res Ther ; 9(1): 36, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29433563

ABSTRACT

BACKGROUND: Repair deficiency after endometrial injury is an important reason for intra-uterine adhesions, amenorrhea, and infertility in females. Bone marrow-derived mesenchymal stem cell (BMSC) transplantation is effective in repairing the damaged endometrium. However, the possibility of using umbilical cord-derived MSCs (UC-MSCs) to treat endometrial injury is rarely reported. METHODS: Ethanol (95%) was injected into rat uterus to establish a model of endometrial injury. UC-MSCs were injected through the tail vein, either as a single, twice, or thrice administration. Functional restoration of the uterus was assessed by testing embryo implantation rates. Endometrial morphological alteration was observed by hematoxylin and eosin staining. Endometrial fibrosis, markers of epithelial and stromal cells of endometrium, cell proliferation and angiogenesis, and inflammatory factors were detected using immunohistochemistry, Western blotting, and quantitative reverse-transcription polymerase chain reaction. RESULTS: Endometrial morphology and embryo implantation rates were significantly improved on day 8 of transplantation among single-, twice-, or thrice-administered rats. Moreover, UC-MSCs could alleviate fibrosis in general, and reduced the expression of fibrosis markers, α-smooth muscle actin (α-SMA) and transforming growth factor (TGF)-ß. The cell proliferation marker Ki-67 had a positive expression in the injured endometrium after UC-MSC transplantation. The endometrial stromal marker vimentin and epithelial marker cytokeratin-19 (CK-19) expressions were visibly increased. The expression of vascular markers CD31, vascular endothelial growth factor (VEGF)A, and matrix metalloprotein (MMP)9 was generally upregulated. Proinflammatory factors interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-2 were significantly downregulated in the rats administered UC-MSCs twice and thrice. CONCLUSIONS: UC-MSC transplantation contributed to the repair of endometrial injury and restoration of fertility, likely through the suppression of excessive fibrosis and inflammation, and enhancement of endometrial cell proliferation and vascular remodeling.


Subject(s)
Endometrium , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Umbilical Cord/metabolism , Uterine Diseases , Animals , Antigens, Differentiation/metabolism , Chronic Disease , Endometrium/injuries , Endometrium/metabolism , Endometrium/pathology , Female , Heterografts , Humans , Mesenchymal Stem Cells/pathology , Rats , Rats, Sprague-Dawley , Umbilical Cord/pathology , Uterine Diseases/metabolism , Uterine Diseases/pathology , Uterine Diseases/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...