Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202410208, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988225

ABSTRACT

Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc-ion batteries (ZIBs). Solid-state ZIBs are considered to be an efficient strategy by adopting high-quality solid-state electrolytes (SSEs). Here, by confining the deep eutectic electrolyte (DEE) into the nanochannels of the metal-organic framework (MOF)-PCN-222, a stable DEE@PCN-222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion-transport network composed of DEE and PCN-222 in the interior of DEE@PCN-222 realizes the efficient Zn2+ conduction, contributing to a high ionic conductivity of 3.13 × 10-4 S cm-1 at room temperature, a low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.76. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN-222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid-state ZIBs show a specific capacity of 306 mAh g-1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high-safety and high-performance ZIBs.

2.
Adv Mater ; 36(23): e2312661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38290062

ABSTRACT

Solid-state lithium-oxygen (Li-O2) batteries have been widely recognized as one of the candidates for the next-generation of energy storage batteries. However, the development of solid-state Li-O2 batteries has been hindered by the lack of solid-state electrolyte (SSE) with high ionic conductivity at room temperature, high Li+ transference number, and the high stability to air. Herein, the organic molecular porous solid cucurbit[7]uril (CB[7]) with one-dimensional (1D) ion migration channels is developed as the SSE for solid-state Li-O2 batteries. Taking advantage of the 1D ion migration channel for Li+ conduction, CB[7] SSE achieves high ionic conductivity (2.45 × 10-4 S cm-1 at 25 °C). Moreover, the noncovalent interactions facilitated the immobilization of anions, realizing a high Li+ transference number (tLi + = 0.81) and Li+ uniform distribution. The CB[7] SSE also shows a wide electrochemical stability window of 0-4.65 V and high thermal stability and chemical stability, as well as realizes stable Li+ plating/stripping (more than 1000 h at 0.3 mA cm-2). As a result, the CB[7] SSE endows solid-state Li-O2 batteries with superior rate capability and long-term discharge/charge stability (up to 500 h). This design strategy of CB[7] SSE paves the way for stable and efficient solid-state Li-O2 batteries toward practical applications.

3.
Angew Chem Int Ed Engl ; 63(11): e202319211, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38198190

ABSTRACT

Li-N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li-N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo-assisted Li-N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)-modified defective carbon nitride (Au-Nv -C3 N4 ) photocathode. The Au-Nv -C3 N4 exhibits strong light-harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo-assisted Li-N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo-assisted Li-N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo-assisted battery systems breaks through the overpotential bottleneck of Li-N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage.

4.
Angew Chem Int Ed Engl ; 63(5): e202317949, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38078904

ABSTRACT

Solid-state lithium (Li) batteries promise both high energy density and safety while existing solid-state electrolytes (SSEs) fail to satisfy the rigorous requirements of battery operations. Herein, novel polyoxometalate SSEs, Li3 PW12 O40 and Li3 PMo12 O40 , are synthesized, which exhibit excellent interfacial compatibility with electrodes and chemical stability, overcoming the limitations of conventional SSEs. A high ionic conductivity of 0.89 mS cm-1 and a low activation energy of 0.23 eV are obtained due to the optimized three-dimensional Li+ migration network of Li3 PW12 O40 . Li3 PW12 O40 exhibits a wide window of electrochemical stability that can both accommodate the Li anode and high-voltage cathodes. As a result, all-solid-state Li metal batteries fabricated with Li/Li3 PW12 O40 /LiNi0.5 Co0.2 Mn0.3 O2 display a stable cycling up to 100 cycles with a cutoff voltage of 4.35 V and an areal capacity of more than 4 mAh cm-2 , as well as a cost-competitive SSEs price of $5.68 kg-1 . Moreover, Li3 PMo12 O40 homologous to Li3 PW12 O40 was obtained via isomorphous substitution, which formed a low-resistance interface with Li3 PW12 O40 . Applications of Li3 PW12 O40 and Li3 PMo12 O40 in Li-air batteries further demonstrate that long cycle life (650 cycles) can be achieved. This strategy provides a facile, low-cost strategy to construct efficient and scalable solid polyoxometalate electrolytes for high-energy solid-state Li metal batteries.

5.
Angew Chem Int Ed Engl ; 62(37): e202308837, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37477109

ABSTRACT

Solid-state electrolytes (SSEs) with high ionic conductivity and superior stability are considered to be a key technology for the safe operation of solid-state lithium batteries. However, current SSEs are incapable of meeting the requirements for practical solid-state lithium batteries. Here we report a general strategy for achieving high-performance SSEs by engineering polymers of intrinsic microporosity (PIMs). Taking advantage of the interconnected ion pathways generated from the ionizable groups, high ionic conductivity (1.06×10-3  S cm-1 at 25 °C) is achieved for the PIMs-based SSEs. The mechanically strong (50.0 MPa) and non-flammable SSEs combine the two superiorities of outstanding Li+ conductivity and electrochemical stability, which can restrain the dendrite growth and prevent Li symmetric batteries from short-circuiting even after more than 2200 h cycling. Benefiting from the rational design of SSEs, PIMs-based SSEs Li-metal batteries can achieve good cycling performance and superior feasibility in a series of withstand abuse tests including bending, cutting, and penetration. Moreover, the PIMs-based SSEs endow high specific capacity (11307 mAh g-1 ) and long-term discharge/charge stability (247 cycles) for solid-state Li-O2 batteries. The PIMs-based SSEs present a powerful strategy for enabling safe operation of high-energy solid-state batteries.

6.
J Am Chem Soc ; 145(10): 5718-5729, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36880105

ABSTRACT

The demand for high-energy sustainable rechargeable batteries has motivated the development of lithium-oxygen (Li-O2) batteries. However, the inherent safety issues of liquid electrolytes and the sluggish reaction kinetics of existing cathodes remain fundamental challenges. Herein, we demonstrate a promising photo-assisted solid-state Li-O2 battery based on metal-organic framework-derived mixed ionic/electronic conductors, which simultaneously serve as the solid-state electrolytes (SSEs) and the cathode. The mixed conductors could effectively harvest ultraviolet-visible light to generate numerous photoelectrons and holes, which is favorable to participate in the electrochemical reaction, contributing to greatly improved reaction kinetics. According to the study on conduction behavior, we discover that the mixed conductors as SSEs possess outstanding Li+ conductivity (1.52 × 10-4 S cm-1 at 25 °C) and superior chemical/electrochemical stability (especially toward H2O, O2-, etc.). Application of mixed ionic electronic conductors in photo-assisted solid-state Li-O2 batteries further reveals that a high energy efficiency (94.2%) and a long life (320 cycles) can be achieved with a simultaneous design of SSEs and cathodes. The achievements present the widespread universality in accelerating the development of safe and high-performance solid-state batteries.

7.
ACS Nano ; 16(8): 12364-12376, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35914235

ABSTRACT

At present, photoassisted Li-air batteries are considered to be an effective approach to overcome the sluggish reaction kinetics of the Li-air batteries. And, the organic liquid electrolyte is generally adopted by the current conventional photoassisted Li-air batteries. However, the superior catalytic activity of photoassisted cathode would in turn fasten the degradation of the organic liquid electrolyte, leading to limited battery cycling life. Herein, we tame the above limitation of the traditional liquid electrolyte system for Li-CO2 batteries by constructing a photoassisted all-solid-state Li-CO2 battery with an integrated bilayer Au@TiO2/Li1.5Al0.5Ge1.5(PO4)3 (LAGP)/LAGP (ATLL) framework, which can essentially improve battery stability. Taking advantage of photoelectric and photothermal effects, the Au@TiO2/LAGP layer enables the acceleration of the slow kinetics of the carbon dioxide reduction reaction and evolution reaction processes. The LAGP layer could resolve the problem of liquid electrolyte decomposition under illumination. The integrated double-layer LAGP framework endows the direct transportation of heat and Li+ in the entire system. The photoassisted all-solid-state Li-CO2 battery achieves an ultralow polarization of 0.25 V with illumination, as well as a high round-trip efficiency of 92.4%. Even at an extremely low temperature of -73 °C, the battery can still deliver a small polarization of 0.6 V by converting solar energy into heat to achieve self-heating. This study is not limited to the Li-air batteries but can also be applied to other battery systems, constituting a significant step toward the practical application of all-solid-state photoassisted Li-air batteries.

8.
Adv Mater ; 34(10): e2107826, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35266208

ABSTRACT

Photoassisted electrochemical reaction is regarded as an effective approach to reduce the overpotential of lithium-oxygen (Li-O2 ) batteries. However, the achievement of both broadband absorption and long term battery cycling stability are still a formidable challenge. Herein, an oxygen vacancy-mediated fast kinetics for a photoassisted Li-O2 system is developed with a silver/bismuth molybdate (Ag/Bi2 MoO6 ) hybrid cathode. The cathode can offer both double advantages for light absorption covering UV to visible region and excellent electrochemical activity for O2 . Upon discharging, the photoexcited electrons from Ag nanoplate based on the localized surface plasmon resonance (LSPR) are injected into the oxygen vacancy in Bi2 MoO6 . The fast oxygen reaction kinetics generate the amorphous Li2 O2 , and the discharge plateau is improved to 3.05 V. Upon charging, the photoexcited holes are capable to decompose amorphous Li2 O2 promptly, yielding a very low charge plateau of 3.25 V. A first cycle round-trip efficiency is 93.8% and retention of 70% over 500 h, which is the longest cycle life ever reported in photoassisted Li-O2 batteries. This work offers a general and reliable strategy for boosting the electrochemical kinetics by tailoring the crystalline of Li2 O2 with wide-band light.

9.
Adv Mater ; 34(2): e2104792, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35023599

ABSTRACT

The photoassisted lithium-oxygen (Li-O2 ) system has emerged as an important direction for future development by effectively reducing the large overpotential in Li-O2 batteries. However, the advancement is greatly hindered by the rapidly recombined photoexcited electrons and holes upon the discharging and charging processes. Herein, a breakthrough is made in overcoming these challenges by developing a new magnetic and optical field multi-assisted Li-O2 battery with 3D porous NiO nanosheets on the Ni foam (NiO/FNi) as a photoelectrode. Under illumination, the photogenerated electrons and holes of the NiO/FNi photoelectrode play a key role in reducing the overpotential during discharging and charging, respectively. By introducing the external magnetic field, the Lorentz force acts oppositely on the photogenerated electrons and holes, thereby suppressing the recombination of charge carriers. The magnetic and optical field multi-assisted Li-O2 battery achieves an ultralow charge potential of 2.73 V, a high energy efficiency of 96.7%, and good cycling stability. This external magnetic and optical field multi-assisted technology paves a new way of developing high-performance Li-O2 batteries and other energy storage systems.

10.
J Am Chem Soc ; 143(35): 14253-14260, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34459185

ABSTRACT

Metal halide perovskite quantum dots, with high light-absorption coefficients and tunable electronic properties, have been widely studied as optoelectronic materials, but their applications in photocatalysis are hindered by their insufficient stability because of the oxidation and agglomeration under light, heat, and atmospheric conditions. To address this challenge, herein, we encapsulated CsPbBr3 nanocrystals into a stable iron-based metal-organic framework (MOF) with mesoporous cages (∼5.5 and 4.2 nm) via a sequential deposition route to obtain a perovskite-MOF composite material, CsPbBr3@PCN-333(Fe), in which CsPbBr3 nanocrystals were stabilized from aggregation or leaching by the confinement effect of MOF cages. The monodispersed CsPbBr3 nanocrystals (4-5 nm) within the MOF lattice were directly observed by transmission electron microscopy and corresponding mapping analysis and further confirmed by powder X-ray diffraction, infrared spectroscopy, and N2 adsorption characterizations. Density functional theory calculations further suggested a significant interfacial charge transfer from CsPbBr3 quantum dots to PCN-333(Fe), which is ideal for photocatalysis. The CsPbBr3@PCN-333(Fe) composite exhibited excellent and stable oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activities in aprotic systems. Furthermore, CsPbBr3@PCN-333(Fe) composite worked as the synergistic photocathode in the photoassisted Li-O2 battery, where CsPbBr3 and PCN-333(Fe) acted as optical antennas and ORR/OER catalytic sites, respectively. The CsPbBr3@PCN-333(Fe) photocathode showed lower overpotential and better cycling stability compared to CsPbBr3 nanocrystals or PCN-333(Fe), highlighting the synergy between CsPbBr3 and PCN-333(Fe) in the composite.

11.
Small ; 17(26): e2100642, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34081392

ABSTRACT

Directly converting and storing abundant solar energy in next-generation energy storage devices is of central importance to build a sustainable society. Herein, a new prototype of a light-promoted rechargeable and flexible Li-CO2 battery with a TiO2 /carbon cloth (CC) cathode is reported for the direct utilization of solar energy to promote the kinetics of the carbon dioxide reduction reaction and carbon dioxide evolution reaction (CO2 ER). Under illumination, photoelectrons are generated in the conduction band of TiO2 /CC, followed by the enhancing diffusion of electrons and lithium ions during the discharge process. The photoelectrons on the cathode surface can regulate the morphology of the discharge product Li2 CO3 , contributing to boosting the kinetics of the subsequent CO2 ER process. In the reverse charge process, photogenerated holes can favor the decomposition of Li2 CO3 , leading to a negative charge potential of 2.88 V without increased polarization over ≈60 h of cycling. Owing to an ultralow overpotential of 0.06 V between the discharge and charge process, an ultrahigh energy efficiency of 97.9% is attained under illumination. The introduction of a light-promoted flexible Li-CO2 battery can pave the way toward developing the use of solar energy to address the charging overpotential of conventional Li-CO2 batteries.

12.
Adv Mater ; 32(44): e2002559, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32715511

ABSTRACT

Porous materials possessing high surface area, large pore volume, tunable pore structure, superior tailorability, and dimensional effect have been widely applied as components of lithium-oxygen (Li-O2 ) batteries. Herein, the theoretical foundation of the porous materials applied in Li-O2 batteries is provided, based on the present understanding of the battery mechanism and the challenges and advantageous qualities of porous materials. Furthermore, recent progress in porous materials applied as the cathode, anode, separator, and electrolyte in Li-O2 batteries is summarized, together with corresponding approaches to address the critical issues that remain at present. Particular emphasis is placed on the importance of the correlation between the function-orientated design of porous materials and key challenges of Li-O2 batteries in accelerating oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) kinetics, improving the electrode stability, controlling lithium deposition, suppressing the shuttle effect of the dissolved redox mediators, and alleviating electrolyte decomposition. Finally, the rational design and innovative directions of porous materials are provided for their development and application in Li-O2 battery systems.

13.
Angew Chem Int Ed Engl ; 59(44): 19518-19524, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-32419313

ABSTRACT

A photoinduced flexible Li-CO2 battery with well-designed, hierarchical porous, and free-standing In2 S3 @CNT/SS (ICS) as a bifunctional photoelectrode to accelerate both the CO2 reduction and evolution reactions (CDRR and CDER) is presented. The photoinduced Li-CO2 battery achieved a record-high discharge voltage of 3.14 V, surpassing the thermodynamic limit of 2.80 V, and an ultra-low charge voltage of 3.20 V, achieving a round trip efficiency of 98.1 %, which is the highest value ever reported (<80 %) so far. These excellent properties can be ascribed to the hierarchical porous and free-standing structure of ICS, as well as the key role of photogenerated electrons and holes during discharging and charging processes. A mechanism is proposed for pre-activating CO2 by reducing In3+ to In+ under light illumination. The mechanism of the bifunctional light-assisted process provides insight into photoinduced Li-CO2 batteries and contributes to resolving the major setbacks of the system.

SELECTION OF CITATIONS
SEARCH DETAIL
...