Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 15(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38927723

ABSTRACT

Magnolia lotungensis is an extremely endangered endemic tree in China. To elucidate the genetic basis of M. lotungensis, we performed a comprehensive transcriptome analysis using a sample integrating the plant's bark, leaves, and flowers. De novo transcriptome assembly yielded 177,046 transcripts and 42,518 coding sequences. Notably, we identified 796 species-specific genes enriched in organelle gene regulation and defense responses. A codon usage bias analysis revealed that mutation bias appears to be the primary driver of selection in shaping the species' genetic architecture. An evolutionary analysis based on dN/dS values of paralogous and orthologous gene pairs indicated a predominance of purifying selection, suggesting strong evolutionary constraints on most genes. A comparative transcriptomic analysis with Magnolia sinica identified approximately 1000 ultra-conserved genes, enriched in essential cellular processes such as transcriptional regulation, protein synthesis, and genome stability. Interestingly, only a limited number of 511 rapidly evolving genes under positive selection were detected compared to M. sinica and Magnolia kuangsiensis. These genes were enriched in metabolic processes associated with adaptation to specific environments, potentially limiting the species' ability to expand its range. Our findings contribute to understanding the genetic architecture of M. lotungensis and suggest that an insufficient number of adaptive genes contribute to its endangered status.


Subject(s)
Endangered Species , Evolution, Molecular , Magnolia , Transcriptome , Magnolia/genetics , Transcriptome/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling/methods , Selection, Genetic , Adaptation, Physiological/genetics , China
2.
Animals (Basel) ; 14(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731265

ABSTRACT

The gut microbiome significantly influences the health and productivity of silkworms (Bombyx mori), the cornerstone of sericulture. With the increasing use of cost-effective artificial diets in sericulture, it is crucial to understand how these diets impact the silkworm gut microbiomes. Here we employed 16S rRNA sequencing to delineate the impact of three distinct dietary regimens on the silkworm gut microbiomes: exclusive mulberry leaf diet (SY), exclusive artificial feed diet (SL), and a sequential transition from artificial feed to mulberry leaves (ZS). Our results unveiled stark differences in microbial diversity across the groups, with the ZS group displaying an intermediary complexity. LefSe and random forest analyses identified Methylobacteriaceae, Microbacterium, and Rhodococcus as significantly enriched in the ZS group, suggesting their potential to facilitate silkworms' adaptation to dietary transitions. Functional profiling revealed differential pathway regulation, indicating a metabolic reconfiguration in response to dietary modulations. Notably, the enrichment of Lactobacillus and Weissella in both the SL and ZS groups highlights their potential as probiotics in artificial diets. Our findings provide insights into the diet adaptation mechanisms of silkworm gut microbiota, paving the way for harnessing the intestinal bacteria to enhance silkworm health and silk production through targeted microbial interventions in sericulture practices.

3.
Genomics ; 116(3): 110849, 2024 05.
Article in English | MEDLINE | ID: mdl-38679345

ABSTRACT

Paulownia fortunei is an ecologically and economically valuable tree cultivated for its rapid growth and high-quality timber. To enhance Paulownia germplasm, we have developed the elite variety QingT with patented advantages in growth rate and apical dominance. To illuminate the genetic basis of QingT's superior traits, here we harness comparative population genomics to analyze genomic variation patterns between QingT and common Paulownia. We performed whole-genome re-sequencing of 30 QingT and 30 common samples, detecting 15.6 million SNPs and 2.6 million indels. Phylogeny and population structure analyses robustly partitioned common and QingT into distinct groups which indicate robust genome stabilization. QingT exhibited reduced heterozygosity and linkage disequilibrium decay compared to common Paulownia, reflecting high recombination, indicating hybridizing effects with common white-flowered string is the source of its patented advantages. Genome selection scans uncovered 25 regions of 169 genes with elevated nucleotide diversity, indicating selection sweeps among groups. Functional analysis of sweep genes revealed upregulation of ribosomal, biosynthesis, and growth pathways in QingT, implicating enhanced protein production and developmental processes in its rapid growth phenotype. This study's insights comprehensively chart genomic variation during Paulownia breeding, localizing candidate loci governing agronomic traits, and underpinnings of future molecular breeding efforts to boost productivity.


Subject(s)
Genome, Plant , Polymorphism, Single Nucleotide , Selective Breeding , Selection, Genetic , Plant Breeding , Linkage Disequilibrium , Phylogeny
4.
Insects ; 15(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38667352

ABSTRACT

The pygmy grasshopper, Zhengitettix transpicula, is a Chinese endemic species with an exceedingly limited distribution and fragile population structure, rendering it vulnerable to extinction. We present a high-continuity, chromosome-scale reference genome assembly to elucidate this species' distinctive biology and inform conservation. Employing an integrated sequencing approach, we achieved a 970.40 Mb assembly with 96.32% coverage across seven pseudo-chromosomes and impressive continuity (N50 > 220 Mb). Genome annotation achieves identification with 99.2% BUSCO completeness, supporting quality. Comparative analyses with 14 genomes from Orthoptera-facilitated phylogenomics and revealed 549 significantly expanded gene families in Z. transpicula associated with metabolism, stress response, and development. However, genomic analysis exposed remarkably low heterozygosity (0.02%), implying a severe genetic bottleneck from small, fragmented populations, characteristic of species vulnerable to extinction from environmental disruptions. Elucidating the genetic basis of population dynamics and specialization provides an imperative guideline for habitat conservation and restoration of this rare organism. Moreover, divergent evolution analysis of the CYP305m2 gene regulating locust aggregation highlighted potential structural and hence functional variations between Acrididae and Tetrigidae. Our chromosomal genomic characterization of Z. transpicula advances Orthopteran resources, establishing a framework for evolutionary developmental explorations and applied conservation genomics, reversing the trajectory of this unique grasshopper lineage towards oblivion.

5.
Insects ; 15(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38535370

ABSTRACT

Mitochondrial genomes offer pragmatic genetic markers to reconstruct evolutionary relationships and inform taxonomic classifications. Here, we present complete mitochondrial sequences for four Chinese pygmy grasshoppers (Tetrigidae), aiming to reevaluate phylogenetic patterns and morphological taxonomy. Our 17,643 bp, 16,274 bp, 15,086 bp, and 15,398 bp mitogenomes of Exothotettix guangxiensis, Formosatettix longwangshanensis, Euparatettix sinufemoralis and Systolederus zhengi, respectively, exhibit archetypal Tetrigidae architecture. We constructed phylogenies using 13 protein-coding loci from 39 Tetrigidae mitogenomes, revealing several genus-level clusters with statistically solid support, conflicts regarding Ex. guangxiensis, F. longwangshanensis merging into Tetrix, and two subclades of Systolederus. The dated divergence analysis indicates over 150 Mya of Tetrigidae ancestry, tracing the Systolederus generic group splits up to ~75 million years ago. Moreover, the Tetrix generic group radiated over 14 Mya across vast distributions, consistent with rapid adaptive dispersals. Our mitochondrial reconstructions suggest that Synstolederus is taxonomically overextended for a single genus, while the distinctiveness of Ex. guangxiensis and F. longwangshanensis from Tetrix appears questionable, and the Tetrix generic group comprises a potential tRNA-Ile coding region. Our integrative mitogenomic approaches will help resolve issues stemming from morphological taxonomy that is reliant on traits that are prone to convergence. This investigation enhances comprehension of Tetrigidae phylogeny and accentuates molecular systematics.

6.
Genes (Basel) ; 15(3)2024 03 04.
Article in English | MEDLINE | ID: mdl-38540394

ABSTRACT

Magnolia kwangsiensis, a dioecious tree native to China, is recognized not only for its status as an at-risk species but also for its potential in therapeutic applications courtesy of its bioactive compounds. However, the genetic underpinnings of its leaf development and compound biosynthesis are not well documented. Our study aims to bridge this knowledge gap through comparative transcriptomics, analyzing gene expression through different leaf maturation stages. We studied the transcriptome of M. kwangsiensis leaves by applying RNA sequencing at juvenile, tender, and mature phases. We identified differentially expressed genes (DEGs) to explore transcriptional changes accompanying the developmental trajectory. Our analysis delineates the transcriptional landscape of over 20,000 genes with over 6000 DEGs highlighting significant transcriptional shifts throughout leaf maturation. Mature leaves demonstrated upregulation in pathways related to photosynthesis, cell wall formation, and polysaccharide production, affirming their structural integrity and specialized metabolic functions. Our GO and KEGG enrichment analyses underpin these findings. Furthermore, we unveiled coordinated gene activity correlating development with synthesizing therapeutically relevant polysaccharides. We identified four novel glycosyltransferases potentially pivotal in this synergistic mechanism. Our study uncovers the complementary evolutionary forces that concurrently sculpt structural and chemical defenses. These genetic mechanisms calibrate leaf tissue resilience and biochemical efficacy.


Subject(s)
Magnolia , Magnolia/genetics , Gene Expression Profiling , Transcriptome/genetics , Plant Leaves/genetics , Plant Leaves/chemistry , Sequence Analysis, RNA
7.
Front Microbiol ; 14: 1278271, 2023.
Article in English | MEDLINE | ID: mdl-37954243

ABSTRACT

The gut microbiota, a complex ecosystem integral to host wellbeing, is modulated by environmental triggers, including exposure to heavy metals such as chromium. This study aims to comprehensively explore chromium-induced gut microbiota and metabolomic shifts in the quintessential lepidopteran model organism, the silkworm (Bombyx mori). The research deployed 16S rDNA sequence analysis and LC/MS metabolomics in its experimental design, encompassing a control group alongside low (12 g/kg) and high (24 g/kg) feeding chromium dosing regimens. Considerable heterogeneity in microbial diversity resulted between groups. Weissella emerged as potentially resilient to chromium stress, while elevated Propionibacterium was noted in the high chromium treatment group. Differential analysis tools LEfSe and random forest estimation identified key species like like Cupriavidus and unspecified Myxococcales, offering potential avenues for bioremediation. An examination of gut functionality revealed alterations in the KEGG pathways correlated with biosynthesis and degradation, suggesting an adaptive metabolic response to chromium-mediated stress. Further results indicated consequential fallout in the context of metabolomic alterations. These included an uptick in histidine and dihydropyrimidine levels under moderate-dose exposure and a surge of gentisic acid with high-dose chromium exposure. These are critical players in diverse biological processes ranging from energy metabolism and stress response to immune regulation and antioxidative mechanisms. Correlative analyses between bacterial abundance and metabolites mapped noteworthy relationships between marker bacterial species, such as Weissella and Pelomonas, and specific metabolites, emphasizing their roles in enzyme regulation, synaptic processes, and lipid metabolism. Probiotic bacteria showed robust correlations with metabolites implicated in stress response, lipid metabolism, and antioxidant processes. Our study reaffirms the intricate ties between gut microbiota and metabolite profiles and decodes some systemic adaptations under heavy-metal stress. It provides valuable insights into ecological and toxicological aspects of chromium exposure that can potentially influence silkworm resilience.

8.
Genes (Basel) ; 14(8)2023 08 12.
Article in English | MEDLINE | ID: mdl-37628667

ABSTRACT

Chromium is a severe heavy metal pollutant with significant environmental risks. The effects of Chromium on the digestion of Bombyx mori (silkworms) are of particular importance due to their ecological and economic significance. Herein, RNA sequencing was conducted on nine midgut samples from silkworms exposed to control, 12 g/kg and 24 g/kg Chromium chemical diets. Comparative transcriptomics revealed that under moderate Chromium exposure, there was a significant increase in up-regulated genes (1268 up-regulated to 857 down-regulated), indicating a stimulation response. At higher stress levels, a weakened survival response was observed, with a decrease in up-regulated genes and an increase in down-regulated genes (374 up-regulated to 399 down-regulated). A notable shift in cellular responses under medium chromium exposure was exposed, signifying the activation of crucial metabolic and transport systems and an elevation in cellular stress and toxicity mechanisms. The observation of up-regulated gene expression within xenobiotic metabolism pathways suggests a heightened defense against Chromium-induced oxidative stress, which was primarily through the involvement of antioxidant enzymes. Conversely, high-dose Chromium exposure down-regulates the folate biosynthesis pathway, indicating biological toxicity. Two novel genes responsive to pressure were identified, which could facilitate future stress adaptation understanding. The findings provide insights into the molecular mechanisms underlying silkworms' digestion response to Chromium exposure and could inform its biological toxicity.


Subject(s)
Bombyx , Chromium , Animals , Chromium/toxicity , Bombyx/genetics , Acclimatization , Antioxidants , Gene Expression
9.
Genes (Basel) ; 14(2)2023 01 18.
Article in English | MEDLINE | ID: mdl-36833184

ABSTRACT

The mole cricket Gryllotalpa orientalis is an evolutionarily, medicinal, and agriculturally significant insect that inhabits underground environments and is distributed globally. This study measured genome size by flow cytometry and k-mer based on low-coverage sequencing, and nuclear repetitive elements were also identified. The haploid genome size estimate is 3.14 Gb by flow cytometry, 3.17 Gb, and 3.77 Gb-based two k-mer methods, respectively, which is well within the range previously reported for other species of the suborder Ensifera. 56% of repetitive elements were found in G. orientalis, similar to 56.83% in Locusta migratoria. However, the great size of repetitive sequences could not be annotated to specific repeat element families. For the repetitive elements that were annotated, Class I-LINE retrotransposon elements were the most common families and more abundant than satellite and Class I-LTR. These results based on the newly developed genome survey could be used in the taxonomic study and whole genome sequencing to improve the understanding of the biology of G. orientalis.


Subject(s)
Gryllidae , Animals , Gryllidae/genetics , Base Sequence , Chromosome Mapping , Repetitive Sequences, Nucleic Acid , Genome Size
10.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835417

ABSTRACT

Tachycines meditationis (Orthoptera: Rhaphidophoridae: Tachycines) is a widely distributed insect in eastern Asia. This species is common in urban environments, and its unique omnivorous diet may contribute to its success in various habitats. However, molecular studies on the species are scarce. Here, we obtained the first transcriptome sequence of T. meditationis and performed preliminary analyses to test whether the evolution of coding sequences fits the expectations based on the species' ecology. We retrieved 476,495 effective transcripts and annotated 46,593 coding sequences (CDS). We analysed the codon usage and found that directional mutation pressure was the leading cause of codon usage bias in this species. This genome-wide relaxed codon usage pattern in T. meditationis is surprising, given the potentially large population size of this species. Moreover, despite the omnivorous diet, the chemosensory genes of this species do not exhibit codon usage deviating significantly from the genome-level pattern. They also do not seem to experience more gene family expansion than other cave cricket species do. A thorough search for rapidly evolved genes using the dN/dS value showed that genes associated with substance synthesis and metabolic pathways, such as retinol metabolism, aminoacyl-tRNA biosynthesis, and fatty acid metabolism, underwent species-specific positive selection. While some results seem to contradict the species ecology, our transcriptome assembly provides a valuable molecular resource for future studies on camel cricket evolution and molecular genetics for feeding ecology in insects, in general.


Subject(s)
Gryllidae , Animals , Camelus , Transcriptome , Insecta , Genome
11.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768416

ABSTRACT

Most butterflies feed on nectar, while some saprophagous butterflies forage on various non-nectar foods. To date, little is known about the genomic and molecular shifts associated with the evolution of the saprophagous feeding strategy. Here, we assembled the high-quality chromosome-level genome of Hestina assimilis to explore its saprophagous molecular and genetic mechanisms. This chromosome-level genome of H. assimilis is 412.82 Mb, with a scaffold N50 of 15.70 Mb. In total, 98.11% of contigs were anchored to 30 chromosomes. Compared with H. assimilis and other Nymphalidae butterflies, the genes of metabolism and detoxification experienced expansions. We annotated 80 cytochrome P450 (CYP) genes in the H. assimilis genome, among which genes belonging to the CYP4 subfamily were significantly expanded (p < 0.01). These P450 genes were unevenly distributed and mainly concentrated on chromosomes 6-9. We identified 33 olfactory receptor (OR), 20 odorant-binding protein (OBP), and six gustatory receptor (GR) genes in the H. assimilis genome, which were fewer than in the nectarivorous Danaus plexippus. A decreased number of OBP, OR, and GR genes implied that H. assimilis should resort less to olfaction and gustation than their nectarivorous counterparts, which need highly specialized olfactory and gustatory functions. Moreover, we found one site under positive selection occurred in residue 996 (phenylalanine) of GR genes exclusive to H. assimilis, which is conservative in most lineages. Our study provides support for the adaptive evolution of feeding habits in butterflies.


Subject(s)
Butterflies , Animals , Butterflies/genetics , Genome , Chromosomes/genetics , Phylogeny
12.
Int J Mol Sci ; 23(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36292953

ABSTRACT

Gene arrangement (relative location of genes) is another evolutionary marker of the mitogenome that can provide extensive information on the evolutionary mechanism. To explore the evolution of gene arrangements in the mitogenome of diversified Ensifera, we sequenced the mitogenome of the unique dune cricket species found in China and used it for phylogenetic analysis, in combination with 84 known Ensiferan mitogenomes. The mitogenome of Schizodactylus jimo is a 16,428-bp circular molecule that contains 37 genes. We identified eight types of gene arrangement in the 85 ensiferan mitogenomes. The gene location changes (i.e., gene translocation and duplication) were in three gene blocks: I-Q-M-ND2, rrnl-rns-V, and ND3-A-R-N-S-E-F. From the phylogenetic tree, we found that Schizodactylus jimo and most other species share a typical and ancient gene arrangement type (Type I), while Grylloidea has two types (Types II and III), and the other five types are rare and scattered in the phylogenetic tree. We deduced that the tandem replication-random loss model is the evolutionary mechanism of gene arrangements in Ensifera. Selection pressure analysis revealed that purifying selection dominated the evolution of the ensiferan mitochondrial genome. This study suggests that most gene rearrangements in the ensiferan mitogenome are rare accidental events.


Subject(s)
Genome, Mitochondrial , Orthoptera , Animals , Gene Order , Genome, Mitochondrial/genetics , Orthoptera/genetics , Phylogeny , Gene Rearrangement , Birds
13.
Front Microbiol ; 13: 806927, 2022.
Article in English | MEDLINE | ID: mdl-35479627

ABSTRACT

Gut bacteria exert effects on the health and fitness of their insect hosts. Grasshoppers are an important part of the grassland ecosystem and provide important ecosystem services. As the most valuable feature in grassland ecosystem, the compositions and potential influences of gut bacterial in herbivorous grasshoppers in the same ecological environment are essential but undetermined. To facilitate such studies, we collected nine species of grasshoppers (n = 110) from a rebuild grassland on the Loess Plateau in northern Shaanxi, China, which is a representative area of ecosystem restoration model. We characterized the composition and function of the gut bacteria. We found that 326 OTUs were exhibited in all grasshoppers in which Enterobacter, Pantoea, Bacillus, and Spiroplsma are dominant. Among them, 18 OTUs were shared across all nine species of grasshoppers. The predicted function showed that the majority function of those OTUs were involved in survival dependent processes including membrane transport, carbohydrate metabolism, amino acid metabolism, and DNA replication and repair. The composition of gut bacteria is specific to each grasshopper species, and the bacteria community is most various in Trilophidia annulata. These results highlight the gut bacterial community diversity in different grasshopper species. Our findings are necessary for better understanding the relationships between this important herbivorous insect and their microbiomes and have the potential contribution of evaluating the revegetation and ecosystem management in this area.

14.
Front Genet ; 12: 678625, 2021.
Article in English | MEDLINE | ID: mdl-34322153

ABSTRACT

Sphingonotus Fieber, 1852 (Orthoptera: Acrididae), is a grasshopper genus comprising approximately 170 species, all of which prefer dry environments such as deserts, steppes, and stony benchlands. In this study, we aimed to examine the adaptation of grasshopper species to arid environments. The genome size of Sphingonotus tsinlingensis was estimated using flow cytometry, and the first high-quality full-length transcriptome of this species was produced. The genome size of S. tsinlingensis is approximately 12.8 Gb. Based on 146.98 Gb of PacBio sequencing data, 221.47 Mb full-length transcripts were assembled. Among these, 88,693 non-redundant isoforms were identified with an N50 value of 2,726 bp, which was markedly longer than previous grasshopper transcriptome assemblies. In total, 48,502 protein-coding sequences were identified, and 37,569 were annotated using public gene function databases. Moreover, 36,488 simple tandem repeats, 12,765 long non-coding RNAs, and 414 transcription factors were identified. According to gene functions, 61 cytochrome P450 (CYP450) and 66 heat shock protein (HSP) genes, which may be associated with drought adaptation of S. tsinlingensis, were identified. We compared the transcriptomes of S. tsinlingensis and two other grasshopper species which were less tolerant to drought, namely Mongolotettix japonicus and Gomphocerus licenti. We observed the expression of CYP450 and HSP genes in S. tsinlingensis were higher. We produced the first full-length transcriptome of a Sphingonotus species that has an ultra-large genome. The assembly characteristics were better than those of all known grasshopper transcriptomes. This full-length transcriptome may thus be used to understand the genetic background and evolution of grasshoppers.

15.
Zootaxa ; 5071(3): 437-446, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-35390900

ABSTRACT

A new species, Tuberfemurus viridulus sp. nov. is described and illustrated with photographs. The new species is similar to T. torulisinotus Deng, 2019, but differs from the latter by broader vertex, invisible frontal costa in profile, distinctly truncate apex of hind pronotal process, and two large triangular projections on lower outer carinae of hind femur. An updated key to species of Tuberfemurus is provided. Simultaneously, the complete mitochondrial genome of Tuberfemurus viridulus sp. nov. is sequenced and analyzed. The total length of the assembled mitogenome is 15,060 bp with 37 typical mitochondrial genes and a non-coding region (A + T-rich region). The order and orientation of the gene arrangement pattern are identical to that of most Tetrigoidea species. All PCGs initiate with the standard start codon of ATN, except ATP6 with GAC and ND1 with TTG; and terminate with the complete stop codon (TAA/TAG) or with an incomplete T- codon. This data could provide the genome information available for Tetrigoidea and facilitate phylogenetic studies of related insects.


Subject(s)
Genome, Mitochondrial , Orthoptera , Animals , Genes, Mitochondrial , Orthoptera/genetics , Phylogeny , RNA, Transfer/genetics
16.
Zootaxa ; 4564(2): zootaxa.4564.2.10, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-31716509

ABSTRACT

The new species, Hilethera xinjiangensis sp. nov. (Orthoptera: Acrididae: Oedipodinae) is described based on specimens collected from Xinjiang, northern China. The new species is similar to H. brevipennis Zheng Lu, 2002 and H. turanica Uvarov, 1925, but differs from: (1) dark brown in general coloration, (2) darker coloration in forewings, (3) forewings longer than H. brevipennis but shorter than H. turanica, (4) cubital area of forewings boarder than H. brevipennis and H. turanica, (5) hind tibiae dark brown with two light yellow pre-basal rings, while dark with one fade pre-basal ring in H. brevipennis and light yellow with three dark rings in H. turanica.In addition, the complete mitogenome of holotype was sequenced using next-generation sequencing technology. The total length of the assembled mitogenome is 16,145 bp, representing 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and one noncoding region (D-loop region). The new mitogenome sequence is compared with published Oedipodinae mitogenomes and the phylogenetic relationships within the subfamily are reconstructed. The results infer that the gene cox1 could be a useful marker for higher phylogenetic level, while the genes nd5 and rrnL could be potentially useful markers between closely related species.


Subject(s)
Genome, Mitochondrial , Grasshoppers , Orthoptera , Animals , China , Grasshoppers/genetics , Orthoptera/genetics , Phylogeny , RNA, Ribosomal , RNA, Transfer
17.
Plants (Basel) ; 8(11)2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31717580

ABSTRACT

Eragrostis of the tribe Eragrostideae is a taxonomically complex genus, because of its polyploid nature and the presence of similar morphological characters among its species. However, the relationship between these morphologically indistinguishable species at the genomic level has not yet been investigated. Here, we report the complete chloroplast genome of E. pilosa and compare its genome structures, gene contents, simple sequence repeats (SSRs), sequence divergence, codon usage bias, and Kimura 2-parameter (K2P) interspecific genetic distances with those of other Eragrostideae species. The E. pilosa chloroplast genome was 134,815 bp in length and contained 132 genes and four regions, including a large single-copy region (80,100 bp), a small single-copy region (12,661 bp), and a pair of inverted repeats (21,027 bp). The average nucleotide diversity between E. pilosa and E. tef was estimated to be 0.011, and 0.01689 among all species. The minimum and maximum K2P interspecific genetic distance values were identified in psaA (0.007) and matK (0.029), respectively. Of 45 SSRs, eight were shared with E. tef, all of which were in the LSC region. Phylogenetic analysis resolved the monophyly of the sampled Eragrostis species and confirmed the close relationship between E. pilosa and E. tef. This study provides useful chlorophyll genomic information for further species identification and phylogenetic reconstruction of Eragrostis species.

18.
BMC Genomics ; 20(1): 356, 2019 May 09.
Article in English | MEDLINE | ID: mdl-31072326

ABSTRACT

BACKGROUND: Cadmium (Cd)-containing chemicals can cause serious damage to biological systems. In animals and plants, Cd exposure can lead to metabolic disorders or death. However, for the most part the effects of Cd on specific biological processes are not known. DNA methylation is an important mechanism for the regulation of gene expression. In this study we examined the effects of Cd exposure on global DNA methylation in a living organism by whole-genome bisulfite sequencing (WGBS) using Drosophila melanogaster as model. RESULTS: A total of 71 differentially methylated regions and 63 differentially methylated genes (DMGs) were identified by WGBS. A total of 39 genes were demethylated in the Cd treatment group but not in the control group, whereas 24 showed increased methylation in the former relative to the latter. In most cases, demethylation activated gene expression: genes such as Cdc42 and Mekk1 were upregulated as a result of demethylation. There were 37 DMGs that overlapped with differentially expressed genes from the digital expression library including baz, Act5C, and ss, which are associated with development, reproduction, and energy metabolism. CONCLUSIONS: DNA methylation actively regulates the physiological response to heavy metal stress in Drosophila in part via activation of apoptosis.


Subject(s)
Cadmium/toxicity , DNA Methylation , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Gene Expression Regulation , Genome , Oxidative Stress , Animals , Drosophila melanogaster/drug effects , Female , Genomics , Sulfites/chemistry , Whole Genome Sequencing/methods
19.
Ecol Evol ; 9(8): 4706-4719, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31031937

ABSTRACT

The medicinal utility of leeches has been demonstrated through decades of use in modern hospital settings, mainly as relievers of venous congestion following flap or digit replantation surgery. In the present study, we sequence and annotate (through BLAST- and Gene Ontology-based approaches) the salivary transcriptome of the nonblood feeding hirudinid Whitmania pigra and assess the differential gene expression of anticoagulation factors (through both quantitative real-time PCR [qRT-PCR] and in silico-based methods) during feeding and fasting conditions. This was done in order to evince the diversity of putative anticoagulation factors, as well as estimate the levels of upregulation of genes immediately after feeding. In total, we found sequences with demonstrated orthology (via both phylogenetic analyses and BLAST-based approaches) to seven different proteins that have previously been linked to anticoagulatory capabilities-eglin C, bdellin, granulin, guamerin, hyaluronidase, destabilase I, and lipocalin. All of these were recovered from leeches both in the fasting and in the feeding conditions, but all show signs of upregulation in the feeding leeches. Interestingly, our RNA-seq effort, coupled with a hypergeometric test, indicated that the differentially expressed genes were disproportionately involved in three main immunological pathways (endocytosis, peroxisome regulation, and lysosome regulation). The results and implications of the finding of anticoagulants in this nonblood feeding leech and the putative upregulation of anticoagulation factors after feeding are briefly discussed in an evolutionary context.

20.
Sci Rep ; 9(1): 678, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679466

ABSTRACT

Damselflies and dragonflies, of the order Odonata, have distinct body plans and predatory abilities. Knowledge of their various evolutionary histories will allow for an understanding of the genetic and phenotypic evolution of insects. Mitogenomes are suitable materials to elucidate this, but the mitogenome of only a few odonates have been annotated. Herein, we report the complete mitogenome of nine odonates, including seven dragonflies and two damselflies, and a comprehensive analysis of the codon usage in 31 Odonata mitogenomes with the aim to estimate their evolutionary characteristics. Overall, a weak codon bias exists among odonate mitogenomes, although this favours AT-ending codons. Damselflies have a weaker codon usage bias than dragonflies, and 37 codons have significantly different usages. Both directional mutation and purifying selection shape damselfly and dragonfly mitogenomes. Although inevitable, directional mutation bias plays a minor role, whereas purifying selection pressure is the dominant evolutionary force. A higher selection pressure is observed in dragonflies than in damselflies, but it mainly acts on codon usage patterns rather than amino acid translation. Our findings suggest that dragonflies might have more efficient mitochondrial gene expression levels than damselflies, producing more proteins that support their locomotion and predatory abilities.


Subject(s)
Codon Usage , Genome, Insect , Odonata/genetics , Animals , Biological Evolution , Genome, Mitochondrial , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...