Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dig Dis Sci ; 67(6): 2244-2256, 2022 06.
Article in English | MEDLINE | ID: mdl-34050852

ABSTRACT

BACKGROUND: Lidocaine has been manifested to exert anti-tumor role in gastric cancer (GC) progression. However, the action mechanism by which Lidocaine functions in GC has not been fully elucidated. AIM: The study aimed to reveal the molecular mechanism of Lidocaine in GC progression. METHODS: Cell clonogenicity and viability were assessed by colony formation and methyl thiazolyl tetrazolium assays, respectively. Transwell assay was employed to detect cell migration and invasion. Flow cytometry was implemented to monitor cell apoptosis. Relative expression of circular RNA ANO5 (circ_ANO5), microRNA (miR)-21-5p and Leukemia inhibitory factor receptor (LIFR) was examined by quantitative reverse transcription-polymerase chain reaction. Western blot assay was performed to analyze the levels of LIFR and cell metastasis-related proteins. The target relationship between miR-21-5p and circ_ANO5 or LIFR was confirmed by dual-luciferase reporter assay. In addition, xenograft model was established to explore the role of Lidocaine in vivo. RESULTS: Lidocaine inhibited cell proliferation, migration and invasion, while promoted apoptosis of GC cells. Lidocaine upregulated circ_ANO5 and LIFR expression, but downregulated miR-21-5p expression in GC cells. Additionally, expression of circ_ANO5 and LIFR was decreased, while miR-21-5p expression was increased in GC cells. Circ_ANO5 depletion or miR-21-5p overexpression attenuated Lidocaine-induced anti-proliferative and anti-metastatic effects on GC cells. Circ_ANO5 could sponge miR-21-5p, and miR-21-5p targeted LIFR. Moreover, Lidocaine suppressed the tumor growth in vivo. CONCLUSION: Lidocaine might GC cell malignancy by modulating circ_ANO5/miR-21-5p/LIFR axis, highlighting a novel insight for GC treatment.


Subject(s)
MicroRNAs , Stomach Neoplasms , Anoctamins , Cell Proliferation/genetics , Humans , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Lidocaine/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Receptors, OSM-LIF/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
2.
J Environ Pathol Toxicol Oncol ; 40(4): 87-97, 2021.
Article in English | MEDLINE | ID: mdl-34936303

ABSTRACT

Propofol has been previously demonstrated to relieve hepatocellular carcinoma (HCC). However, the specific molecular mechanisms mediated by propofol remain to be explored. mRNA or miRNA expression was detected by real-time quantitative polymerase chain reaction (RT-qPCR). Protein expression was determined by Western blot. The interaction between microRNA (miR)-556-3p and long coding RNA non-coding RNA activated by DNA damage (NORAD) or migration and invasion enhancer 1 (MIEN1) was verified by luciferase reporter gene and RNA pull-down assays. Cellular functions were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetra-zolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and Transwell assays. Propofol notably suppressed the proliferation and EMT of Hep3B and SNU449 cell lines. NORAD was overexpressed in the HCC tissues and cells, while propofol decreased NORAD levels in the HCC cells. Conversely, overexpression of NORAD partially restored malignant behaviors of the HCC cells and abolished the effects of propofol. Additionally, NORAD sponged miR-556-3p to upregulate MIEN1. However, the knockdown of MIEN1 suppressed the proliferation and EMT of HCC cells. Propofol inhibited HCC cell proliferation and EMT progress via NORAD/miR-556-3p/MIEN1 axis. These data provided a potent prognosis and diagnostic marker for HCC and supplemented the underlying mechanism of propofol-induced anti-tumor effects.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Liver Neoplasms/drug therapy , Propofol/pharmacology , DNA Damage/drug effects , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
3.
Oncol Lett ; 12(1): 563-571, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27347181

ABSTRACT

Fentanyl is widely used to treat acute and chronic pain. Previous in vitro studies by the present authors demonstrated that fentanyl inhibits the progression of the MGC-803 human gastric carcinoma cell line by affecting apoptosis-related genes, including nuclear factor-kappa B (NF-κB) and phosphatase and tensin homolog. In the present study, the effects of fentanyl on NF-κB-dependent gene expression were investigated in vivo. Nude mice were inoculated with an MGC-803 cell suspension, and mice that developed subcutaneous tumors measuring >1.0×1.0 cm were selected for study. Mice were administered intraperitoneal injections of fentanyl (0.05 mg/kg, group F1; 0.1 mg/kg, group F2; 0.2 mg/kg, group F3; and 0.4 mg/kg, group F4) for 14 consecutive days. Non-fentanyl-treated mice (group C) and normal saline-treated mice (group N) served as the control groups. Tumor growth was monitored by calculating the time-shift of the growth curve. Morphological changes were also observed using microscopy. The expression of NF-κB, B-cell lymphoma-2 (Bcl-2), B-cell associated X protein (Bax), vascular endothelial growth factor-A (VEGF-A) and matrix metalloproteinase-9 (MMP-9) in the subcutaneous tumor tissue was also analyzed by reverse transcription-polymerase chain reaction and western blot analysis, and confirmed using immunohistochemistry. The relative tumor volumes of groups F1, F2, F3 and F4 were significantly reduced compared with groups C and N. Furthermore, subcutaneous tumor cells exhibited nuclear swelling, chromatin condensation, reduced chromatin and nuclear fragmentation in the F1, F2, F3 and F4 groups. The number of NF-κB+, Bcl-2+, VEGF-A+ and MMP-9+ subcutaneous tumor cells was reduced, whereas the number of Bax+ cells was increased in the F1, F2, F3 and F4 groups. Additionally, in these groups, tumor expression of NF-κB, Bcl-2, VEGF-A and MMP-9 transcripts and proteins was downregulated, while Bax messenger RNA and protein expression levels were upregulated. The results revealed that fentanyl inhibits the growth of subcutaneous human gastric carcinoma tumors in mice. Therefore, it could be hypothesized that this antineoplastic activity may result from the inhibition of NF-κB activation, suppression of downstream VEGF-A and MMP-9 expression, and normalization of the pro-apoptotic Bax/Bcl-2 ratio.

4.
Cell Biochem Funct ; 32(8): 720-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25431245

ABSTRACT

Propofol is widely used in paediatric anaesthesia and intensive care unit because of its essentially short-acting anaesthetic effect. Recent data have shown that propofol induced neurotoxicity in developing brain. However, the mechanisms are not extremely clear. To gain a better insight into the toxic effects of propofol on hippocampal neurons, we treated cells at the days in vitro 7 (DIV 7), which were prepared from Sprague-Dawley embryos at the 18th day of gestation, with propofol (0.1-1000 µM) for 3 h. A significant decrease in neuronal proliferation and a remarkable increase in neuroapoptosis were observed in DIV 7 hippocampal neurons as measured by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay and apoptosis assay respectively. Moreover, propofol treatment decreased the nuclear factor kappaB (NF-κB) p65 expression, which was accompanied by a reduction in B-cell lymphoma 2 (Bcl-2) mRNA and protein levels, increased caspase-3 mRNA and activation of caspase-3 protein. These results indicated that downregulation of NF-κB p65 and Bcl-2 were involved in the potential mechanisms of propofol-induced neurotoxicity. This likely led to the caspase-3 activation, triggered apoptosis and inhibited the neuronal growth and proliferation that we have observed in our in vitro systems.


Subject(s)
Anesthetics, Intravenous/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Cell Proliferation/drug effects , Hippocampus/cytology , Neurons/drug effects , Propofol/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Transcription Factor RelA/metabolism , Animals , Cell Survival/drug effects , Cells, Cultured , Down-Regulation/drug effects , Neurons/cytology , Neurons/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Up-Regulation/drug effects
5.
Asian Pac J Cancer Prev ; 13(4): 1377-82, 2012.
Article in English | MEDLINE | ID: mdl-22799335

ABSTRACT

Morphine is not only an analgesic treating pain for patients with cancer but also a potential anticancer drug inhibiting tumor growth and proliferation. To gain better insight into the involvement of morphine in the biological characteristics of gastric cancer, we investigated effects on progression of gastric carcinoma cells and the expression of some apoptosis-related genes including caspase-9, caspase-3, survivin and NF-κB using the MGC-803 human gastric cancer cell line. The viability of cells was assessed by MTT assay, proliferation by colony formation assay, cell cycle progression and apoptosis by flow cytometry and ultrastructural alteration by transmission electron microscopy. The influences of morphine on caspase-9, caspase-3, survivin and NF-κB were evaluated by semi-quantitative RT-PCR and Western blot. Our data showed that morphine could significantly inhibit cell growth and proliferation and cause cell cycle arrest in the G2/M phase. MGC-803 cells which were incubated with morphine also had a higher apoptotic rate than control cells. Morphine also led to morphological changes of gastric cancer cells. The mechanism of morphine inhibiting gastric cancer progression in vitro might be associated with activation of caspase-9 and caspase-3 and inhibition of survivin and NF-κB.


Subject(s)
Analgesics, Opioid/pharmacology , Apoptosis/drug effects , Carcinoma/genetics , G2 Phase Cell Cycle Checkpoints/drug effects , Gene Expression/drug effects , Morphine/pharmacology , Stomach Neoplasms/genetics , Analysis of Variance , Carcinoma/metabolism , Caspase 3/drug effects , Caspase 3/genetics , Caspase 9/drug effects , Caspase 9/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Inhibitor of Apoptosis Proteins/drug effects , Inhibitor of Apoptosis Proteins/genetics , Microscopy, Electron, Scanning , NF-kappa B/drug effects , NF-kappa B/genetics , RNA, Messenger/metabolism , Stomach Neoplasms/metabolism , Survivin
SELECTION OF CITATIONS
SEARCH DETAIL
...