Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 187: 108663, 2024 May.
Article in English | MEDLINE | ID: mdl-38657407

ABSTRACT

Use of capillary blood devices for exposome research can deepen our understanding of the intricate relationship between environment and health, and open up new avenues for preventive and personalized medicine, particularly for vulnerable populations. While the potential of these whole blood devices to accurately measure chemicals and metabolites has been demonstrated, how untargeted metabolomics data from these samplers can be integrated with previous and ongoing environmental health studies that have used conventional blood collection approaches is not yet clear. Therefore, we performed a comprehensive comparison between relative-quantitative metabolite profiles measured in venous blood collected with dried whole blood microsamplers (DBM), dried whole blood spots (DBS), and plasma from 54 mothers in an ethnically diverse population. We determined that a majority of the 309 chemicals and metabolites showed similar median intensity rank, moderate correlation, and moderate agreement between participant-quantiled intraclass correlation coefficients (ICCs) for pair-wise comparisons among the three biomatrices. In particular, whole blood sample types, DBM and DBS, were in highest agreement across metabolite comparison metrics, followed by metabolites measured in DBM and plasma, and then metabolites measured in DBS and plasma. We provide descriptive characteristics and measurement summaries as a reference database. This includes unique metabolites that were particularly concordant or discordant in pairwise comparisons. Our results demonstrate that the range of metabolites from untargeted metabolomics data collected with DBM, DBS, and plasma provides biologically relevant information for use in independent exposome investigations. However, before meta-analysis with combined datasets are performed, robust statistical approaches that integrate untargeted metabolomics data collected on different blood matrices need to be developed.


Subject(s)
Dried Blood Spot Testing , Metabolomics , Humans , Female , Dried Blood Spot Testing/methods , Environmental Health , Adult , Plasma/chemistry , Blood Specimen Collection/methods , Pregnancy , Exposome
2.
Sci Total Environ ; 912: 169383, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38101622

ABSTRACT

The practical advantages of capillary whole blood collection over venipuncture plasma collection for human exposome research are well known. However, before epidemiologists, clinicians, and public health researchers employ these microvolume sample collections, a rigorous evaluation of pre-analytical storage conditions is needed to develop protocols that maximize sample stability and reliability over time. Therefore, we performed a controlled experiment of dried whole blood collected on 10 µL Mitra microsamplers (DBM), 5-mm punches of whole blood from a dried blood spot (DBS), and 10 µL of plasma, and evaluated the effects of storage conditions at 4 °C, -20 °C, or -80 °C for up to 6 months on the resulting metabolite profiles measured with untargeted liquid chromatography-high resolution mass spectrometry (LC-HRMS). At -80 °C storage conditions, metabolite profiles from DBS, DBM, and plasma showed similar stability. While DBS and DBM metabolite profiles remained similarly stable at -20 °C storage, plasma profiles showed decreased stability at -20 °C compared to -80 °C storage. At refrigerated temperatures (4 °C), metabolite profiles collected on DBM were more stable than plasma or DBS, particularly for lipid classes. These results inform robust capillary blood sample storage protocols for DBM and DBS at potentially warmer temperatures than -80 °C, which may facilitate blood collections for populations outside of a clinical setting.


Subject(s)
Plasma , Specimen Handling , Humans , Temperature , Reproducibility of Results
3.
EBioMedicine ; 97: 104831, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37884429

ABSTRACT

BACKGROUND: Although per- and polyfluoroalkyl substances (PFAS) exposure is a potential contributor to the increasing thyroid cancer trend, limited studies have investigated the association between PFAS exposure and thyroid cancer in human populations. We therefore investigated associations between plasma PFAS levels and thyroid cancer diagnosis using a nested case-control study of patients with thyroid cancer with plasma samples collected at/before cancer diagnosis. METHODS: 88 patients with thyroid cancer using diagnosis codes and 88 healthy (non-cancer) controls pair-matched on sex, age (±5 years), race/ethnicity, body mass index, smoking status, and year of sample collection were identified in the BioMe population (a medical record-linked biobank at the Icahn School of Medicine at Mount Sinai in New York); 74 patients had papillary thyroid cancer. Eight plasma PFAS were measured using untargeted analysis with liquid chromatography-high resolution mass spectrometry and suspect screening. Associations between individual PFAS levels and thyroid cancer were evaluated using unconditional logistic regression models to estimate adjusted odds ratios (ORadj) and 95% confidence intervals (CI). FINDINGS: There was a 56% increased rate of thyroid cancer diagnosis per doubling of linear perfluorooctanesulfonic acid (n-PFOS) intensity (ORadj, 1.56, 95% CI: 1.17-2.15, P = 0.004); results were similar when including patients with papillary thyroid cancer only (ORadj, 1.56, 95% CI: 1.13-2.21, P = 0.009). This positive association remained in subset analysis investigating exposure timing including 31 thyroid cancer cases diagnosed ≥1 year after plasma sample collection (ORadj, 2.67, 95% CI: 1.59-4.88, P < 0.001). INTERPRETATION: This study reports associations between exposure to PFAS and increased rate of (papillary) thyroid cancer. Thyroid cancer risk from PFAS exposure is a global concern given the prevalence of PFAS exposure. Individual PFAS studied here are a small proportion of the total number of PFAS supporting additional large-scale prospective studies investigating thyroid cancer risk associated with exposure to PFAS chemicals. FUNDING: National Institutes of Health grants and The Andrea and Charles Bronfman Philanthropies.


Subject(s)
Environmental Pollutants , Fluorocarbons , Thyroid Neoplasms , Humans , Prospective Studies , Thyroid Cancer, Papillary , Case-Control Studies , Thyroid Neoplasms/epidemiology , Thyroid Neoplasms/etiology
4.
Oncol Lett ; 26(4): 456, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37736556

ABSTRACT

Ovarian cancer (OC) is a common and highly prevalent malignant tumor in women, associated with a high mortality rate, easy recurrence and easy metastasis, which is predominantly at an advanced stage when detected in patients. This renders the cancer more difficult to treat, and consequently it is also associated with a low survival rate, being the malignancy with the highest mortality rate among the various gynecological tumors. As an important factor affecting the development and metastasis of OC, understanding the underlying mechanism(s) through which it is formed and developed is crucial in terms of its treatment. At present, the therapeutic methods of angiogenic mimicry for OC remain in the preliminary stages of exploration and have not been applied in actual clinical practice. In the present review, various signaling pathways and factors affecting angiogenic mimicry in OC were described, and the chemical synthetic drugs, natural compound extracts, small-molecule protein antibodies and their associated targets, and so on, that target angiogenic mimicry in the treatment of OC, were discussed. The purpose of this review was to provide new research ideas and potential theoretical support for the discovery of novel therapeutic targets for OC that may be applied in the clinic, with the aim of effectively reducing its metastasis and recurrence rates.

5.
Heliyon ; 9(4): e14930, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37077678

ABSTRACT

This study investigated the hydrochar-based porous carbon prepared by combining the technical route of hydrothermal carbonization (HTC) + chemical activation. The hydrochar morphology was adjusted by changing the activation reaction conditions and adding metal salts. Experiments showed that the activation of KHCO3 significantly increased the specific surface area and pore size of the hydrochar. Besides, oxygen-rich groups on the surface of the activated hydrochar interacted with heavy metal ions to achieve efficient adsorption. The activated hydrothermal carbon adsorption capacity for Pb2+ and Cd2+ ions reached 289 and 186 mg/g, respectively. The adsorption mechanism study indicated that the adsorption of Pb2+ and Cd2+ was related to electrostatic attraction, ion exchange, and complexation reactions. The "HTC + chemical activation" technology was environmentally friendly and effectively implemented antibiotic residues. Carbon materials with high adsorption capacity can be prepared so that biomass resources can be utilized with excessive value, as a consequence presenting technical assistance for the comprehensive disposal of organic waste in the pharmaceutical industry and establishing a green and clean production system.

6.
BMC Bioinformatics ; 21(Suppl 1): 2, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33297937

ABSTRACT

BACKGROUND: Partial Least-Squares Discriminant Analysis (PLS-DA) is a popular machine learning tool that is gaining increasing attention as a useful feature selector and classifier. In an effort to understand its strengths and weaknesses, we performed a series of experiments with synthetic data and compared its performance to its close relative from which it was initially invented, namely Principal Component Analysis (PCA). RESULTS: We demonstrate that even though PCA ignores the information regarding the class labels of the samples, this unsupervised tool can be remarkably effective as a feature selector. In some cases, it outperforms PLS-DA, which is made aware of the class labels in its input. Our experiments range from looking at the signal-to-noise ratio in the feature selection task, to considering many practical distributions and models encountered when analyzing bioinformatics and clinical data. Other methods were also evaluated. Finally, we analyzed an interesting data set from 396 vaginal microbiome samples where the ground truth for the feature selection was available. All the 3D figures shown in this paper as well as the supplementary ones can be viewed interactively at http://biorg.cs.fiu.edu/plsda CONCLUSIONS: Our results highlighted the strengths and weaknesses of PLS-DA in comparison with PCA for different underlying data models.


Subject(s)
Computational Biology , Discriminant Analysis , Least-Squares Analysis , Machine Learning , Principal Component Analysis
7.
Chem Commun (Camb) ; 56(6): 892-895, 2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31859291

ABSTRACT

A bimetallic Pt-Co/KL catalyst was fabricated via the atomic layer deposition (ALD) method and demonstrated to be highly active and stable for the aromatization of n-heptane at a low temperature (420 °C), which is due to the restructured Pt-Co clusters providing unique catalytic sites and the enhanced electron-donating properties of the catalyst.

8.
Article in English | MEDLINE | ID: mdl-31007699

ABSTRACT

As a well-known Chinese herb medicine, the Cistanche deserticola has been used for the treatment of kidney deficiency syndrome in China for thousands of years. Both the raw product of Cistanche deserticola slices (RCD) and its Wine Steam-Processed Product (WSCD) are used clinically for different effects. In this study, the influences of steaming process with wine (SPW) from Cistanche deserticola on chemical compositions and biological effects were investigated. The principal component analysis (PCA) and quantitative analysis were used to study the differences of the chemical compositions. The effects of nourishing kidney were also investigated to compare the differences between the RCD and the WSCD. The PCA results indicated that the obvious separation was achieved in the RCD and WSCD. The results of quantitative analysis showed that the WSCD has higher amounts of total polysaccharides, total PhGs, isoacteoside, and osmanthuside B than RCD, while the content of 2'-acetylacteoside and acteoside decreased after the SPW. The comparison of RCD and WSCD on biological activities showed that both could restore the level of sex hormone in the model of kidney-yang deficiency and improve the antioxidant effect. The WSCD were much better in increasing the viscera weight of kidney and seminal vesicle. The results indicated that SPW changed its chemical components and enhanced its biological activities.

9.
Sci Total Environ ; 626: 703-709, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29396335

ABSTRACT

The in-situ CO2 removal pyrolysis of Chinese herb residue was studied by thermodynamic equilibrium simulation and experimental methods. The effects of temperature, pressure, and CaO loading on the gas composition, heating value and yield were determined. The simulation results indicate that the heating value of product gas increases with the increase of Ca/H and pressure, and slightly decreases with the increase of temperature. The simulation results were verified by the experiments conducted with a micro fixed-bed reactor. Under the simulated reaction conditions including atmospheric pressure, reaction temperature of 700 °C and the Ca/H of 0.65, the CO2 in the product gas was effectively removed, resulting the syngas with a high heating value. The product gas was mainly composed of H2, CO, CO2 and CH4 with the contents of 47.52, 22.04, 9.01 and 14.02 respectively by experiment. And the lower heating value of the product gas reached 18.1 MJ/Nm3.

SELECTION OF CITATIONS
SEARCH DETAIL
...