Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
JACS Au ; 4(6): 2130-2150, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38938812

ABSTRACT

Monoclonal antibodies (mAbs) have gradually dominated the drug markets for various diseases. Improvement of the therapeutic activities of mAbs has become a critical issue in the pharmaceutical industry. A novel endo-ß-N-acetylglucosaminidase, EndoSz, from Streptococcus equisubsp. zooepidemicus Sz105 is discovered and applied to enhance the activities of mAbs. Our studies demonstrate that the mutant EndoSz-D234M possesses an excellent transglycosylation activity to generate diverse glycoconjugates on mAbs. We prove that EndoSz-D234M can be applied to various marketed therapeutic antibodies and those in development for antibody remodeling. The remodeled homogeneous antibodies (mAb-G2S2) produced by EndoSz-D234M increase the relative ADCC activities by 3-26-fold. We further report the high-resolution crystal structures of EndoSz-D234M in the apo-form at 2.15 Å and the complex form with a bound G2S2-oxazoline intermediate at 2.25 Å. A novel pH-jump method was utilized to obtain the complex structure with a high resolution. The detailed interactions of EndoSz-D234M and the carried G2S2-oxazoline are hence delineated. The oxazoline sits in a hole, named the oxa-hole, which stabilizes the G2S2-oxazoline in transit and catalyzes the further transglycosylation reaction while targeting Asn-GlcNAc (+1) of Fc. In the oxa-hole, the H-bonding network involved with oxazoline dominates the transglycosylation activity. A mobile loop2 (a.a. 152-159) of EndoSz-D234M reshapes the binding grooves for the accommodation of G2S2-oxazoline upon binding, at which Trp154 forms a hydrogen bond with Man (-2). The long loop4 (a.a. 236-248) followed by helix3 is capable of dominating the substrate selectivity of EndoSz-D234M. In addition, the stepwise transglycosylation behavior of EndoSz-D234M is elucidated. Based on the high-resolution structures of the apo-form and the bound form with G2S2-oxazoline as well as a systematic mutagenesis study of the relative transglycosylation activity, the transglycosylation mechanism of EndoSz-D234M is revealed.

2.
Nat Commun ; 14(1): 545, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36726015

ABSTRACT

Understanding the structural diversity of honeybee-infecting viruses is critical to maintain pollinator health and manage the spread of diseases in ecology and agriculture. We determine cryo-EM structures of T = 4 and T = 3 capsids of virus-like particles (VLPs) of Lake Sinai virus (LSV) 2 and delta-N48 LSV1, belonging to tetraviruses, at resolutions of 2.3-2.6 Å in various pH environments. Structural analysis shows that the LSV2 capsid protein (CP) structural features, particularly the protruding domain and C-arm, differ from those of other tetraviruses. The anchor loop on the central ß-barrel domain interacts with the neighboring subunit to stabilize homo-trimeric capsomeres during assembly. Delta-N48 LSV1 CP interacts with ssRNA via the rigid helix α1', α1'-α1 loop, ß-barrel domain, and C-arm. Cryo-EM reconstructions, combined with X-ray crystallographic and small-angle scattering analyses, indicate that pH affects capsid conformations by regulating reversible dynamic particle motions and sizes of LSV2 VLPs. C-arms exist in all LSV2 and delta-N48 LSV1 VLPs across varied pH conditions, indicating that autoproteolysis cleavage is not required for LSV maturation. The observed linear domino-scaffold structures of various lengths, made up of trapezoid-shape capsomeres, provide a basis for icosahedral T = 4 and T = 3 architecture assemblies. These findings advance understanding of honeybee-infecting viruses that can cause Colony Collapse Disorder.


Subject(s)
Capsid Proteins , RNA Viruses , Bees , Animals , Capsid Proteins/metabolism , Capsid/metabolism , Cryoelectron Microscopy , Molecular Conformation , Virus Assembly
3.
Acta Crystallogr D Struct Biol ; 79(Pt 2): 154-167, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36762861

ABSTRACT

The alkaline α-galactosidase AtAkαGal3 from Arabidopsis thaliana catalyzes the hydrolysis of α-D-galactose from galacto-oligosaccharides under alkaline conditions. A phylogenetic analysis based on sequence alignment classifies AtAkαGal3 as more closely related to the raffinose family of oligosaccharide (RFO) synthases than to the acidic α-galactosidases. Here, thin-layer chromatography is used to demonstrate that AtAkαGal3 exhibits a dual function and is capable of synthesizing stachyose using raffinose, instead of galactinol, as the galactose donor. Crystal structures of complexes of AtAkαGal3 and its D383A mutant with various substrates and products, including galactose, galactinol, raffinose, stachyose and sucrose, are reported as the first representative structures of an alkaline α-galactosidase. The structure of AtAkαGal3 comprises three domains: an N-terminal domain with 13 antiparallel ß-strands, a catalytic domain with an (α/ß)8-barrel fold and a C-terminal domain composed of ß-sheets that form two Greek-key motifs. The WW box of the N-terminal domain, which comprises the conserved residues FRSK75XW77W78 in the RFO synthases, contributes Trp77 and Trp78 to the +1 subsite to contribute to the substrate-binding ability together with the (α/ß)8 barrel of the catalytic domain. The C-terminal domain is presumably involved in structural stability. Structures of the D383A mutant in complex with various substrates and products, especially the natural substrate/product stachyose, reveal four complete subsites (-1 to +3) at the catalytic site. A functional loop (residues 329-352) that exists in the alkaline α-galactosidase AtAkαGal3 and possibly in RFO synthases, but not in acidic α-galactosidases, stabilizes the stachyose at the +2 and +3 subsites and extends the catalytic pocket for the transferase mechanism. Considering the similarities in amino-acid sequence, catalytic domain and activity between alkaline α-galactosidases and RFO synthases, the structure of AtAkαGal3 might also serve a model for the study of RFO synthases, structures of which are lacking.


Subject(s)
Arabidopsis , alpha-Galactosidase , alpha-Galactosidase/genetics , alpha-Galactosidase/chemistry , Raffinose/chemistry , Hydrolases , Phylogeny , Galactose
4.
Molecules ; 26(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34885830

ABSTRACT

Dihydroorotase (DHOase), a dimetalloenzyme containing a carbamylated lysine within the active site, is a member of the cyclic amidohydrolase family, which also includes allantoinase (ALLase), dihydropyrimidinase (DHPase), hydantoinase, and imidase. Unlike most known cyclic amidohydrolases, which are tetrameric, DHOase exists as a monomer or dimer. Here, we report and analyze two crystal structures of the eukaryotic Saccharomyces cerevisiae DHOase (ScDHOase) complexed with malate. The structures of different DHOases were also compared. An asymmetric unit of these crystals contained four crystallographically independent ScDHOase monomers. ScDHOase shares structural similarity with Escherichia coli DHOase (EcDHOase). Unlike EcDHOase, ScDHOase can form tetramers, both in the crystalline state and in solution. In addition, the subunit-interacting residues of ScDHOase for dimerization and tetramerization are significantly different from those of other DHOases. The tetramerization pattern of ScDHOase is also different from those of DHPase and ALLase. Based on sequence analysis and structural evidence, we identify two unique helices (α6 and α10) and a loop (loop 7) for tetramerization, and discuss why the residues for tetramerization in ScDHOase are not necessarily conserved among DHOases.


Subject(s)
Dihydroorotase/chemistry , Dihydroorotase/metabolism , Protein Multimerization , Saccharomyces cerevisiae/enzymology , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amino Acid Sequence , Biocatalysis , Crystallography, X-Ray , Enzyme Stability , Humans , Hydrogen Bonding , Lysine/metabolism , Malates/metabolism , Models, Molecular , Saccharomyces cerevisiae/genetics , Solutions , Temperature
5.
Bioinorg Chem Appl ; 2021: 2572844, 2021.
Article in English | MEDLINE | ID: mdl-34630544

ABSTRACT

Dihydroorotase (DHOase) possesses a binuclear metal center in which two Zn ions are bridged by a posttranslationally carbamylated lysine. DHOase catalyzes the reversible cyclization of N-carbamoyl aspartate (CA-asp) to dihydroorotate (DHO) in the third step of the pathway for the biosynthesis of pyrimidine nucleotides and is an attractive target for potential anticancer and antimalarial chemotherapy. Crystal structures of ligand-bound DHOase show that the flexible loop extends toward the active site when CA-asp is bound (loop-in mode) or moves away from the active site, facilitating the product DHO release (loop-out mode). DHOase binds the product-like inhibitor 5-fluoroorotate (5-FOA) in a similar mode to DHO. In the present study, we report the crystal structure of DHOase from Saccharomyces cerevisiae (ScDHOase) complexed with 5-FOA at 2.5 Å resolution (PDB entry 7CA0). ScDHOase shares structural similarity with Escherichia coli DHOase (EcDHOase). However, our complexed structure revealed that ScDHOase bound 5-FOA differently from EcDHOase. 5-FOA ligated the Zn atoms in the active site of ScDHOase. In addition, 5-FOA bound to ScDHOase through the loop-in mode. We also characterized the binding of 5-FOA to ScDHOase by using the site-directed mutagenesis and fluorescence quenching method. Based on these lines of molecular evidence, we discussed whether these different binding modes are species- or crystallography-dependent.

6.
Int J Mol Sci ; 22(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202294

ABSTRACT

Dihydroorotase (DHOase) is the third enzyme in the de novo biosynthesis pathway for pyrimidine nucleotides, and an attractive target for potential anticancer chemotherapy. By screening plant extracts and performing GC-MS analysis, we identified and characterized that the potent anticancer drug plumbagin (PLU), isolated from the carnivorous plant Nepenthes miranda, was a competitive inhibitor of DHOase. We also solved the complexed crystal structure of yeast DHOase with PLU (PDB entry 7CA1), to determine the binding interactions and investigate the binding modes. Mutational and structural analyses indicated the binding of PLU to DHOase through loop-in mode, and this dynamic loop may serve as a drug target. PLU exhibited cytotoxicity on the survival, migration, and proliferation of 4T1 cells and induced apoptosis. These results provide structural insights that may facilitate the development of new inhibitors targeting DHOase, for further clinical anticancer chemotherapies.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Biological Products/pharmacology , Biosynthetic Pathways/drug effects , Dihydroorotase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Naphthoquinones/pharmacology , Pyrimidines/biosynthesis , Antineoplastic Agents, Phytogenic/chemistry , Binding Sites , Biological Products/chemistry , Catalytic Domain , Dihydroorotase/chemistry , Dihydroorotase/genetics , Enzyme Inhibitors/chemistry , Models, Molecular , Molecular Conformation , Molecular Structure , Mutation , Naphthoquinones/chemistry , Protein Binding , Structure-Activity Relationship
7.
Biochem Biophys Res Commun ; 551: 33-37, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33714757

ABSTRACT

Dihydroorotase (DHOase) is the third enzyme in the de novo biosynthesis pathway of pyrimidine nucleotides and considered an attractive target for potential antimalarial, anticancer, and antipathogen chemotherapy. Whether the FDA-approved clinical drug 5-fluorouracil (5-FU) that is used to target the enzyme thymidylate synthase for anticancer therapy can also bind to DHOase remains unknown. Here, we report the crystal structures of DHOase from Saccharomyces cerevisiae (ScDHOase) complexed with malate, 5-FU, and 5-aminouracil (5-AU). ScDHOase shares structural similarity with Escherichia coli DHOase. We also characterized the binding of 5-FU and 5-AU to ScDHOase by using the fluorescence quenching method. These complexed structures revealed that residues Arg18, Asn43, Thr106, and Ala275 of ScDHOase were involved in the 5-FU (PDB entry 6L0B) and 5-AU binding (PDB entry 6L0F). Overall, these results provide structural insights that may facilitate the development of new inhibitors targeting DHOase and constitute the 5-FU and 5-AU interactomes for further clinical chemotherapies.


Subject(s)
Antineoplastic Agents/chemistry , Dihydroorotase/chemistry , Fluorouracil/chemistry , Saccharomyces cerevisiae/enzymology , Uracil/analogs & derivatives , Antineoplastic Agents/pharmacology , Binding Sites , Crystallization , Crystallography, X-Ray , Dihydroorotase/metabolism , Escherichia coli/enzymology , Fluorouracil/pharmacology , Malates/chemistry , Models, Molecular , Protein Binding , Uracil/chemistry , Uracil/pharmacology
8.
IUCrJ ; 7(Pt 5): 934-948, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32939285

ABSTRACT

In Pseudomonas aeruginosa, an important opportunistic pathogen that causes numerous acute and chronic infections, the hybrid two-component system (TCS) regulates the swarming ability and biofilm formation with a multistep phospho-relay, and consists of hybrid-sensor histidine kinase (HK), histidine-containing phospho-transfer protein (Hpt) and response regulator (RR). In this work, two crystal structures of HptB and the receiver domain of HK PA1611 (PA1611REC) of P. aeruginosa have been determined in order to elucidate their interactions for the transfer of the phospho-ryl group. The structure of HptB folds into an elongated four-helix bundle - helices α2, α3, α4 and α5, covered by the short N-terminal helix α1. The imidazole side chain of the conserved active-site histidine residue His57, located near the middle of helix α3, protrudes from the bundle and is exposed to solvent. The structure of PA1611REC possesses a conventional (ß/α)5 topology with five-stranded parallel ß-sheets folded in the central region, surrounded by five α-helices. The divalent Mg2+ ion is located in the negatively charged active-site cleft and interacts with Asp522, Asp565 and Arg567. The HptB-PA1611REC complex is further modeled to analyze the binding surface and interactions between the two proteins. The model shows a shape complementarity between the convex surface of PA1611REC and the kidney-shaped HptB with fewer residues and a different network involved in interactions compared with other TCS complexes, such as SLN1-R1/YPD1 from Saccharomyces cerevisiae and AHK5RD/AHP1 from Arabidopsis thaliana. These structural results provide a better understanding of the TCS in P. aeruginosa and could potentially lead to the discovery of a new treatment for infection.

9.
Acta Crystallogr D Struct Biol ; 76(Pt 5): 472-483, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32355043

ABSTRACT

Aldo-keto reductases (AKRs) are NADPH/NADP+-dependent oxidoreductase enzymes that metabolize an aldehyde/ketone to the corresponding alcohol. AKR4C14 from rice exhibits a much higher efficiency in metabolizing malondialdehyde (MDA) than do the Arabidopsis enzymes AKR4C8 and AKR4C9, despite sharing greater than 60% amino-acid sequence identity. This study confirms the role of rice AKR4C14 in the detoxification of methylglyoxal and MDA, and demonstrates that the endogenous contents of both aldehydes in transgenic Arabidopsis ectopically expressing AKR4C14 are significantly lower than their levels in the wild type. The apo structure of indica rice AKR4C14 was also determined in the absence of the cofactor, revealing the stabilized open conformation. This is the first crystal structure in AKR subfamily 4C from rice to be observed in the apo form (without bound NADP+). The refined AKR4C14 structure reveals a stabilized open conformation of loop B, suggesting the initial phase prior to cofactor binding. Based on the X-ray crystal structure, the substrate- and cofactor-binding pockets of AKR4C14 are formed by loops A, B, C and ß1α1. Moreover, the residues Ser211 and Asn220 on loop B are proposed as the hinge residues that are responsible for conformational alteration while the cofactor binds. The open conformation of loop B is proposed to involve Phe216 pointing out from the cofactor-binding site and the opening of the safety belt. Structural comparison with other AKRs in subfamily 4C emphasizes the role of the substrate-channel wall, consisting of Trp24, Trp115, Tyr206, Phe216, Leu291 and Phe295, in substrate discrimination. In particular, Leu291 could contribute greatly to substrate selectivity, explaining the preference of AKR4C14 for its straight-chain aldehyde substrate.


Subject(s)
Aldo-Keto Reductases/chemistry , Oryza/enzymology , Plant Proteins/chemistry , Arabidopsis/enzymology , Malondialdehyde/metabolism , Plants, Genetically Modified , Pyruvaldehyde/metabolism
10.
ACS Omega ; 5(7): 3428-3443, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32118157

ABSTRACT

The protrusion domain (P-domain; MrNVPd) of Macrobrachium rosenbergii nodavirus (MrNV) exists in two conformations, parallel and X-shaped. We have performed a theoretical study to gain insight into the nature of the dimeric interactions involving the dimeric interfaces within parallel and X-shaped conformations of MrNVPd by applying the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses in the framework of the density functional theory (DFT) approach. The results reveal that the dimer-dimer interfaces of MrNVPd have hydrogen bonds of common types. Leu255-Lys287, Tyr257-Lys287, Lys287-Ser253, Met294-Cys328, Asp295-Lys327, Ser298-Ser324, Ile326-Asp295, and Cys328-Met294 are the key residue pairs of the dimer-dimer interfaces to maintain the dimer-dimer structures of MrNVPd through charge-charge, charge-dipole, dipole-dipole, hydrophobic, and hydrogen bonding interactions. The strengths of these intermolecular dimer-dimer interactions in the parallel conformation are much greater than those in the X-shaped conformation. The parallel trimeric interface is held basically by electrostatic and hydrophobic interactions. The electrostatic interactions accompanying a strong hydrogen bond of Oγ1-Hγ1···Oγ1 in the Thr276 A-Thr276 D pair maintain the intermolecular interface of two X-shaped MrNVPd dimers.

11.
Acta Crystallogr D Struct Biol ; 76(Pt 2): 147-154, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32038045

ABSTRACT

Noncrystallographic symmetry (NCS) averaging following molecular-replacement phasing is generally the major technique used to solve a structure with several molecules in one asymmetric unit, such as a spherical icosahedral viral particle. As an alternative method to NCS averaging, a new approach to optimize or to refine the electron density directly under NCS constraints is proposed. This method has the same effect as the conventional NCS-averaging method but does not include the process of Fourier synthesis to generate the electron density from amplitudes and the corresponding phases. It has great merit for the solution of structures with limited data that are either twinned or incomplete at low resolution. This method was applied to the case of the T = 1 shell-domain subviral particle of Penaeus vannamei nodavirus with data affected by twinning using the REFMAC5 refinement software.


Subject(s)
Models, Molecular , Software , Animals , Crystallography, X-Ray/methods , Penaeidae/virology , Virion/chemistry
12.
Commun Biol ; 2: 72, 2019.
Article in English | MEDLINE | ID: mdl-30820467

ABSTRACT

Shrimp nodaviruses, including Penaeus vannamei (PvNV) and Macrobrachium rosenbergii nodaviruses (MrNV), cause white-tail disease in shrimps, with high mortality. The viral capsid structure determines viral assembly and host specificity during infections. Here, we show cryo-EM structures of T = 3 and T = 1 PvNV-like particles (PvNV-LPs), crystal structures of the protrusion-domains (P-domains) of PvNV and MrNV, and the crystal structure of the ∆N-ARM-PvNV shell-domain (S-domain) in T = 1 subviral particles. The capsid protein of PvNV reveals five domains: the P-domain with a new jelly-roll structure forming cuboid-like spikes; the jelly-roll S-domain with two calcium ions; the linker between the S- and P-domains exhibiting new cross and parallel conformations; the N-arm interacting with nucleotides organized along icosahedral two-fold axes; and a disordered region comprising the basic N-terminal arginine-rich motif (N-ARM) interacting with RNA. The N-ARM controls T = 3 and T = 1 assemblies. Increasing the N/C-termini flexibility leads to particle polymorphism. Linker flexibility may influence the dimeric-spike arrangement.


Subject(s)
Capsid Proteins/chemistry , Capsid/metabolism , Nodaviridae/physiology , Palaemonidae/virology , Penaeidae/virology , Virion/metabolism , Amino Acid Sequence , Animals , Capsid/ultrastructure , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cryoelectron Microscopy , Models, Molecular , Nodaviridae/genetics , Nodaviridae/ultrastructure , Protein Domains , Protein Multimerization , Sequence Homology, Amino Acid , Virion/ultrastructure , Virus Assembly
13.
Sci Rep ; 8(1): 14935, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30297797

ABSTRACT

The membrane-embedded quinol:fumarate reductase (QFR) in anaerobic bacteria catalyzes the reduction of fumarate to succinate by quinol in the anaerobic respiratory chain. The electron/proton-transfer pathways in QFRs remain controversial. Here we report the crystal structure of QFR from the anaerobic sulphate-reducing bacterium Desulfovibrio gigas (D. gigas) at 3.6 Å resolution. The structure of the D. gigas QFR is a homo-dimer, each protomer comprising two hydrophilic subunits, A and B, and one transmembrane subunit C, together with six redox cofactors including two b-hemes. One menaquinone molecule is bound near heme bL in the hydrophobic subunit C. This location of the menaquinone-binding site differs from the menaquinol-binding cavity proposed previously for QFR from Wolinella succinogenes. The observed bound menaquinone might serve as an additional redox cofactor to mediate the proton-coupled electron transport across the membrane. Armed with these structural insights, we propose electron/proton-transfer pathways in the quinol reduction of fumarate to succinate in the D. gigas QFR.


Subject(s)
Bacterial Proteins/metabolism , Desulfovibrio gigas/metabolism , Oxidoreductases/metabolism , Bacterial Proteins/chemistry , Crystallography, X-Ray , Desulfovibrio gigas/chemistry , Desulfovibrionaceae Infections/microbiology , Electron Transport , Humans , Models, Molecular , Oxidoreductases/chemistry , Protein Binding , Protein Conformation , Protons , Substrate Specificity , Vitamin K 2/metabolism
14.
Sci Rep ; 8(1): 287, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29321480

ABSTRACT

The human hepatoma-derived growth factor (HDGF), containing the chromatin-associated N-terminal PWWP domain capable of binding the SMYD1 promoter, participates in various cellular processes and is involved in human cancers. We report the first crystal structures of the human HDGF PWWP domain (residues 1-100) in a complex with SMYD1 of 10 bp at 2.84 Å resolution and its apo form at 3.3 Å, respectively. The structure of the apo PWWP domain comprises mainly four ß-strands and two α-helices. The PWWP domain undergoes domain swapping to dramatically transform its secondary structures, altering the overall conformation from monomeric globular folding into an extended dimeric structure upon DNA binding. The flexible loop2, as a hinge loop with the partially built structure in the apo PWWP domain, notably refolds into a visible and stable α-helix in the DNA complex. The swapped PWWP domain interacts with the minor grooves of the DNA through residues Lys19, Gly22, Arg79 and Lys80 in varied ways on loops 1 and 4 of the two chains, and the structure becomes more rigid than the apo form. These novel structural findings, together with physiological and activity assays of HDGF and the PWWP domain, provide new insights into the DNA-binding mechanism of HDGF during nucleosomal functions.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/metabolism , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Protein Interaction Domains and Motifs , Transcription Factors/chemistry , Transcription Factors/metabolism , Amino Acid Sequence , Binding Sites , DNA/chemistry , DNA/metabolism , Humans , Models, Molecular , Protein Binding , Protein Conformation
15.
J Mol Graph Model ; 78: 61-73, 2017 11.
Article in English | MEDLINE | ID: mdl-29032052

ABSTRACT

Crystal structure of the protrusion domain (P-domain) of the grouper nervous necrosis virus (GNNV) shows the presence of three-fold trimeric protrusions with two asymmetrical calcium cations along the non-crystallographic three-fold axis. The trimeric interaction natures of the interacting residues and the calcium cations with the neighboring residues within the trimeric interface have been studied by the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses in the framework of the density-functional theory (DFT) approach. The results revealed that residues Leu259, Val274, Trp280, and Gln322 of subunit A, Arg261, Asp275, Ala277, and Gln322 of subunit B, Leu259, Asp260, Arg261, Ala277, Val278, and Leu324 of subunit C are the main residues involved in the trimeric interactions. Charge-dipole, dipole-dipole, and hydrogen bonding interactions make the significant contributions to these trimeric interactions. Among different interacting residues within trimeric interface, residue pair Arg261 B-Leu259C forms the strongest hydrogen bond inside the interface between subunits B and C. It was also found that calcium cations interact with residues Asp273, Val274, and Asp275 of subunits A, B, and C through charge-charge and charge transfer interactions.


Subject(s)
Calcium/chemistry , Molecular Conformation , Orthoreovirus/chemistry , Viral Proteins/chemistry , Amino Acids/chemistry , Cations , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Orthoreovirus/genetics , Quantum Theory
16.
PLoS One ; 12(7): e0182060, 2017.
Article in English | MEDLINE | ID: mdl-28750050

ABSTRACT

Single-stranded DNA-binding protein (SSB) and PriA helicase play important roles in bacterial DNA replication restart process. The mechanism by which PriA helicase is bound and stimulated by SSB in Escherichia coli (Ec) has been established, but information on this process in Gram-positive bacteria are limited. We characterized the properties of SSB from Staphylococcus aureus (SaSsbA, a counterpart of EcSSB) and analyzed its interaction with SaPriA. The gel filtration chromatography analysis of purified SaSsbA showed a stable tetramer in solution. The crystal structure of SaSsbA determined at 1.82 Å resolution (PDB entry 5XGT) reveals that the classic oligonucleotide/oligosaccharide-binding folds are formed in the N-terminal DNA-binding domain, but the entire C-terminal domain is disordered. Unlike EcSSB, which can stimulate EcPriA via a physical interaction between EcPriA and the C-terminus of EcSSB (SSB-Ct), SaSsbA does not affect the activity of SaPriA. We also found that SaPriA can be bound by SaSsbA, but not by SaSsbA-Ct. Although no effect was found with SaSsbA, SaPriA can be significantly stimulated by the Gram-negative Klebsiella pneumoniae SSB (KpSSB). In addition, we found that the conserved SSB-Ct binding site of KpPriA (Trp82, Tyr86, Lys370, Arg697, and Gln701) is not present in SaPriA. Arg697 in KpPriA is known to play a critical role in altering the SSB35/SSB65 distribution, but this corresponding residue in SaPriA is Glu767 instead, which has an opposite charge to Arg. SaPriA E767R mutant was constructed and analyzed; however, it still cannot be stimulated by SaSsbA. Finally, we found that the conserved MDFDDDIPF motif in the Gram-negative bacterial SSB is DISDDDLPF in SaSsbA, i.e., F172 in EcSSB and F168 in KpSSB is S161 in SaSsbA, not F. When acting with SaSsbA S161F mutant, the activity of SaPriA was dramatically enhanced elevenfold. Overall, the conserved binding sites, both in EcPriA and EcSSB, are not present in SaPriA and SaSsbA, thereby no stimulation occurs. Our observations through structure-sequence comparison and mutational analyses indicate that the case of EcPriA-EcSSB is not applicable to SaPriA-SaSsbA because of inherent differences among the species.


Subject(s)
Bacterial Proteins/metabolism , DNA Helicases/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Staphylococcus aureus/metabolism , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Binding Sites , Chromosomes, Bacterial/genetics , Conserved Sequence , Crystallography, X-Ray , DNA Helicases/chemistry , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/isolation & purification , Electrophoretic Mobility Shift Assay , Genes, Bacterial , Klebsiella pneumoniae/metabolism , Peptides/chemistry , Peptides/metabolism , Protein Multimerization , Sequence Analysis, Protein , Solutions , Staphylococcus aureus/genetics , Surface Plasmon Resonance
17.
Acta Crystallogr D Struct Biol ; 72(Pt 7): 830-40, 2016 07.
Article in English | MEDLINE | ID: mdl-27377380

ABSTRACT

Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures.


Subject(s)
Capsid Proteins/chemistry , Crystallography, X-Ray/methods , Nodaviridae/chemistry , Models, Molecular , Protein Conformation , Protein Domains
18.
Proteins ; 84(9): 1328-32, 2016 09.
Article in English | MEDLINE | ID: mdl-27213893

ABSTRACT

The negatively charged bacterial polysaccharides-wall teichoic acids (WTAs) are synthesized intracellularly and exported by a two-component transporter, TagGH, comprising a transmembrane subunit TagG and an ATPase subunit TagH. We determined the crystal structure of the C-terminal domain of TagH (TagH-C) to investigate its function. The structure shows an N-terminal SH3-like subdomain wrapped by a C-terminal subdomain with an anti-parallel ß-sheet and an outer shell of α-helices. A stretch of positively charged surface across the subdomain interface is flanked by two negatively charged regions, suggesting a potential binding site for negatively charged polymers, such as WTAs or acidic peptide chains. Proteins 2016; 84:1328-1332. © 2016 Wiley Periodicals, Inc.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Bacterial Proteins/chemistry , Hydrolases/chemistry , Protein Subunits/chemistry , Staphylococcus epidermidis/chemistry , Teichoic Acids/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amino Acid Motifs , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Biological Transport , Cell Wall/chemistry , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Staphylococcus epidermidis/enzymology , Static Electricity , Teichoic Acids/metabolism
19.
Sci Rep ; 5: 16441, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26563565

ABSTRACT

ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOT(TM)). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a ß-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-ß-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen.


Subject(s)
Antigens, Bacterial/chemistry , Bacterial Outer Membrane Proteins/chemistry , Salmonella typhi/physiology , Typhoid Fever/microbiology , Amino Acid Sequence , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Binding Sites , Circular Dichroism , Crystallography, X-Ray , Host-Pathogen Interactions , Humans , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Multimerization , Salmonella typhi/genetics , Salmonella typhi/metabolism , Sequence Homology, Amino Acid , Typhoid Fever/diagnosis
20.
PLoS Pathog ; 11(10): e1005203, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26491970

ABSTRACT

Betanodaviruses cause massive mortality in marine fish species with viral nervous necrosis. The structure of a T = 3 Grouper nervous necrosis virus-like particle (GNNV-LP) is determined by the ab initio method with non-crystallographic symmetry averaging at 3.6 Å resolution. Each capsid protein (CP) shows three major domains: (i) the N-terminal arm, an inter-subunit extension at the inner surface; (ii) the shell domain (S-domain), a jelly-roll structure; and (iii) the protrusion domain (P-domain) formed by three-fold trimeric protrusions. In addition, we have determined structures of the T = 1 subviral particles (SVPs) of (i) the delta-P-domain mutant (residues 35-217) at 3.1 Å resolution; and (ii) the N-ARM deletion mutant (residues 35-338) at 7 Å resolution; and (iii) the structure of the individual P-domain (residues 214-338) at 1.2 Å resolution. The P-domain reveals a novel DxD motif asymmetrically coordinating two Ca2+ ions, and seems to play a prominent role in the calcium-mediated trimerization of the GNNV CPs during the initial capsid assembly process. The flexible N-ARM (N-terminal arginine-rich motif) appears to serve as a molecular switch for T = 1 or T = 3 assembly. Finally, we find that polyethylene glycol, which is incorporated into the P-domain during the crystallization process, enhances GNNV infection. The present structural studies together with the biological assays enhance our understanding of the role of the P-domain of GNNV in the capsid assembly and viral infection by this betanodavirus.


Subject(s)
Capsid Proteins/chemistry , Nodaviridae/chemistry , Virus Assembly , Calcium/metabolism , Crystallography, X-Ray , Polyethylene Glycols/pharmacology , Protein Structure, Tertiary , Virion/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...