Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(15): 5775-5785, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38638235

ABSTRACT

Bacterial infections, as the second leading cause of global death, are commonly treated with antibiotics. However, the improper use of antibiotics contributes to the development of bacterial resistance. Therefore, the accurate differentiation between bacterial and non-bacterial inflammations is of utmost importance in the judicious administration of clinical antibiotics and the prevention of bacterial resistance. However, as of now, no fluorescent probes have yet been designed for the relevant assessments. To this end, the present study reports the development of a novel fluorescence probe (CyQ) that exhibits dual-enzyme responsiveness. The designed probe demonstrated excellent sensitivity in detecting NTR and NAD(P)H, which served as critical indicators for bacterial and non-bacterial inflammations. The utilization of CyQ enabled the efficient detection of NTR and NAD(P)H in distinct channels, exhibiting impressive detection limits of 0.26 µg mL-1 for NTR and 5.54 µM for NAD(P)H, respectively. Experimental trials conducted on living cells demonstrated CyQ's ability to differentiate the variations in NTR and NAD(P)H levels between A. baumannii, S. aureus, E. faecium, and P. aeruginosa-infected as well as LPS-stimulated HUVEC cells. Furthermore, in vivo zebrafish experiments demonstrated the efficacy of CyQ in accurately discerning variations in NTR and NAD(P)H levels resulting from bacterial infection or LPS stimulation, thereby facilitating non-invasive detection of both bacterial and non-bacterial inflammations. The outstanding discriminatory ability of CyQ between bacterial and non-bacterial inflammation positions it as a promising clinical diagnostic tool for acute inflammations.

2.
Front Genet ; 13: 1004665, 2022.
Article in English | MEDLINE | ID: mdl-36276936

ABSTRACT

Background: Associations between irregular diet and the risk of esophageal cancer remain unclear. The current meta-analysis was performed to determine whether the presence of irregular diet increases the risk of esophageal cancer. Methods: The data from PubMed, Cochrane Libraries, and Embase up to 23 January 2022 were included in our analysis to identify studies that investigated associations between irregular diet and the risk of esophageal cancer. Summary relative risk (RR) and 95% confidence intervals (CIs) were calculated using a random-effects model. Results: Five cohort studies and one case-control study investigating associations between irregular diet and the risk of esophageal cancer were included. None of the articles demonstrated publication bias. The summary RR was 4.181 (95% CI 2.196-7.960, I2 = 66.1%, p = 0.011). In the subgroup analysis, we found significant heterogeneity in the Non-disease-causing group, nurse group and Asian group. The above three that produce heterogeneity may be the source of heterogeneity in the results of this study. Conclusion: The current meta-analysis indicates that irregular diet increase the risk of esophageal cancer. Trial registration: (https://www.crd.york.ac.uk/prospero/), (PROSPERO, CRD42022306407).

3.
Nutrients ; 15(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36615858

ABSTRACT

Diabetic nephropathy, primarily caused by advanced glycation end products (AGEs), is a serious complication resulting from type 2 diabetes mellitus (T2DM). Reportedly, theaflavins (TFs) can improve diabetic nephropathy; however, the underlying molecular mechanism is not fully clear. In this study, T2DM mice were treated with different concentrations of TFs by gavage for 10 weeks to investigate the effect of TFs on diabetic nephropathy and their potential molecular mechanism of action. Biochemical and pathological analysis showed that the TFs effectively improved blood glucose, insulin resistance, kidney function, and other symptoms in diabetic mice. The mechanism studies indicated that TFs inhibited the formation of AGEs, thereby inhibiting the activation of the MAPK/NF-κB signaling pathway. Therefore, our study suggested that TFs improved diabetic nephropathy by inhibiting the formation of AGEs.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Diabetic Nephropathies/etiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glycation End Products, Advanced/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Receptor for Advanced Glycation End Products/metabolism , Kidney/metabolism , Antioxidants/pharmacology , NF-kappa B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...