Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biomacromolecules ; 24(8): 3522-3531, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37285477

ABSTRACT

Nowadays, the development of effective modification methods for PLA has gained significant interest because of the wide application of antimicrobial PLA materials in the medical progress. Herein, the ionic liquid (IL) 1-vinyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide, has been grafted onto the PLA chains successfully in the PLA/IL blending films via electron beam (EB) radiation for the miscibility between PLA and IL. It was found that the existence of IL in the PLA matrix can significantly improve the chemical stability under EB radiation. The Mn of PLA-g-IL copolymer did not change obviously but was just decreased from 6.80 × 104 g/mol to 5.20 × 104 g/mol after radiation with 10 kGy. The obtained PLA-g-IL copolymers showed excellent filament forming property during electrospinning process. The spindle structure on the nanofibers can be completely eliminated after feeding only 0.5 wt % ILs for the improvement of ionic conductivity. Specially, the prepared PLA-g-IL nonwovens exhibited outstanding and durable antimicrobial activity for the enrichment of immobilized ILs on the nanofiber surface. This work provides a feasible strategy to realize the modification of functional ILs onto PLA chains with low EB radiation doses, which may have huge potential application in the medical and packaging industry.


Subject(s)
Anti-Infective Agents , Ionic Liquids , Polymers , Polyesters , Anti-Infective Agents/pharmacology
2.
Polymers (Basel) ; 15(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36987196

ABSTRACT

In this work, KH550 (γ-aminopropyl triethoxy silane)-modified hexagonal boron nitride (BN) nanofillers were synthesized through a one-step ball-milling route. Results show that the KH550-modified BN nanofillers synthesized by one-step ball-milling (BM@KH550-BN) exhibit excellent dispersion stability and a high yield of BN nanosheets. Using BM@KH550-BN as fillers for epoxy resin, the thermal conductivity of epoxy nanocomposites increased by 195.7% at 10 wt%, compared to neat epoxy resin. Simultaneously, the storage modulus and glass transition temperature (Tg) of the BM@KH550-BN/epoxy nanocomposite at 10 wt% also increased by 35.6% and 12.4 °C, respectively. The data calculated from the dynamical mechanical analysis show that the BM@KH550-BN nanofillers have a better filler effectiveness and a higher volume fraction of constrained region. The morphology of the fracture surface of the epoxy nanocomposites indicate that the BM@KH550-BN presents a uniform distribution in the epoxy matrix even at 10 wt%. This work guides the convenient preparation of high thermally conductive BN nanofillers, presenting a great application potential in the field of thermally conductive epoxy nanocomposites, which will promote the development of electronic packaging materials.

3.
RSC Adv ; 12(34): 22236-22243, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36043090

ABSTRACT

To simultaneously improve the flame retardancy, strength and toughness of polylactic acid (PLA) fibers, a composite flame retardant CNTs-H-C was prepared with carbon nanotubes (CNTs) as the core, hexachlorocyclotriphosphazene as linker, and chitosan grafted on the surface. The prepared CNTs-H-C was introduced into a PLA matrix to obtain CNTs-H-C/PLA composites and fibers via a melt-blending method. The morphology, structure, flame retardant properties and mechanical properties were thoroughly characterized, and the flame retardant mechanism was studied. Results showed that the prepared CNTs-H-C displayed a nanotube-like morphology with good compatibility and dispersion in the PLA matrix. After blending with PLA, CNTs-H-C/PLA composites exhibited outstanding flame retardancy with limiting oxygen index (LOI) increasing from 20.0% to 27.3%, UL94 rating reaching V-0. More importantly, the introduction of CNTs-H-C did not affect the spinnability of PLA. Compared with pure PLA fibers, the LOI of CNTs-H-C/PLA fibers with a CNTs-H-C content of 1.0 wt% increased by 32.5%, and meanwhile the breaking strength and elongation increased by 28.2% and 30.4%, respectively. Mechanism study revealed that CNTs-H-C/PLA possessed a typical condensed phase flame retardancy mechanism. In short, we have developed a CNT-based composite flame retardant with reinforced and toughened properties for the PLA matrix. The prepared CNTs-H-C showed great potential in polymer flame retardancy and mechanical enhancement.

4.
ACS Omega ; 6(43): 29184-29191, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34746607

ABSTRACT

In this study, two-dimensional Ti3C2 nanosheets were employed to improve the tribological and thermo-mechanical properties of epoxy resin. The Ti3C2 nanosheets were prepared by ultrasound-assisted delamination of multilayered Ti3C2 microparticles, and the Ti3C2 nanosheets/epoxy (Ti3C2/epoxy) nanocomposites were fabricated through physical blending and curing reaction. Scanning electron microscopy results showed that the Ti3C2 nanosheets were dispersed uniformly in the epoxy matrix. Tribological test results showed that the wear rate of Ti3C2/epoxy nanocomposites was only 6.61 × 10-14 m3/(N m) at a 1% mass fraction, which was reduced by 72.1% compared to that of neat epoxy. The morphologies of worn surfaces revealed that the wear form of Ti3C2/epoxy nanocomposites transformed gradually from fatigue wear to adhesive wear with the increase of mass fraction of Ti3C2 nanosheets. Moreover, the results of thermo-mechanical properties indicated that incorporation of Ti3C2 nanosheets effectively improved the storage modulus and glass-transition temperature (T g) of epoxy resin. This work provides guidance for improving the tribological and thermo-mechanical properties of epoxy resin.

5.
Materials (Basel) ; 14(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066155

ABSTRACT

The micromorphology of fillers plays an important role in tribological and mechanical properties of polymer matrices. In this work, a TiO2-decorated Ti2C3 (TiO2/Ti3C2) composite particle with unique micro-nano morphology was engineered to improve the tribological and thermo-mechanical properties of epoxy resin. The TiO2/Ti3C2 were synthesized by hydrothermal growth of TiO2 nanodots onto the surface of accordion-like Ti3C2 microparticles, and three different decoration degrees (low, medium, high density) of TiO2/Ti3C2 were prepared by regulating the concentration of TiO2 precursor solution. Tribological test results indicated that the incorporation of TiO2/Ti3C2 can effectively improve the wear rate of epoxy resin. Among them, the medium density TiO2/Ti3C2/epoxy nanocomposites gained a minimum wear rate. This may be ascribed by the moderate TiO2 nanodot protuberances on the Ti3C2 surface induced a strong mechanical interlock effect between medium-density TiO2/Ti3C2 and the epoxy matrix, which can bear a higher normal shear stress during sliding friction. The morphologies of worn surfaces and wear debris revealed that the wear form was gradually transformed from fatigue wear in neat epoxy to abrasive wear in TiO2/Ti3C2/epoxy nanocomposites. Moreover, the results of thermo-mechanical property indicated that incorporation of TiO2/Ti3C2 also effectively improved the storage modulus and glass transition temperature of epoxy resin.

6.
Macromol Rapid Commun ; 41(19): e2000392, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32833324

ABSTRACT

A strategy is proposed to stabilize the polymeric interface by using the irregular Janus nanosheet (JNS). The poly(vinylidene fluoride) (PVDF)/poly(l-lactic acid) (PLLA) at 60/40 (wt/wt) with a bi-continuous structure is selected as the model melt blend, and the PMMA/epoxy JNS is synthesized and used as the compatibilizer. The JNS is preferentially located at the interface. The interfacial coverage by the JNS reaches a saturated state forming the interconnected jamming structure at 0.5 wt% of the JNS. The interface is thus stabilized which is well preserved after annealing at high temperature. After selectively etching PLLA, the robust PVDF porous material is derived with the JNS armored at the pore skeleton surface. The porous material provides a universal scaffold to achieve stable functional materials after filling the pores.


Subject(s)
Biocompatible Materials , Polymers , Porosity
7.
ACS Appl Mater Interfaces ; 11(5): 5462-5475, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30640429

ABSTRACT

Ion-containing polymers are of great importance for its unique structure and properties. An ion-containing polyamide 6 (PA6) was prepared by grafting an ionic liquid, 1-vinyl-3-butyl imidazole chloride [VBIM][Cl], onto the main chain of PA6 using radiation-induced grafting. The grafted ions on the PA6 main chain significantly influenced the structure and properties of the PA6 matrix. The ions form nanoscale aggregations without inducing further microphase separation. Acting as a physical "cross-linking point," each aggregation enhanced inter/intrachain interactions, which increased the viscosity, storage modulus, and relaxation time and reduced the ability of PA6 to crystallize. However, the bulky cations of the grafted ionic liquid can also be seen as "spacers," which enlarge the distance among chains and reduce the strength of the hydrogen bonds inherently existing in the PA6 matrix. The "cross-linking points" and "spacers" of ions as well as the hydrogen bonds of PA6 take effect collectively in the system. Moreover, the ion-containing PA6 retains good melt processability compared with PA6, despite increased viscosity, and can be easily melt-spun into fibers. Fibers prepared from ion-containing PA6 showed improved mechanical properties and antistatic performance and exhibited the expected antibacterial properties, especially with regard to Escherichia coli. Inspiringly, covalently bonding ions to the PA6 main chain offers a new strategy for fabricating functional fibers with permanent antistatic and antibacterial properties.

8.
Biomacromolecules ; 18(12): 4364-4372, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29111688

ABSTRACT

Here, we fabricated the ionic liquid (IL) grafted poly(vinylidene fluoride) (PVDF) (PVDF-g-IL) via electron-beam irradiation to fight common bacteria and multidrug-resistant "superbugs". Two types of ILs, 1-vinyl-3-butylimmidazolium chloride (IL (Cl)) and 1-vinyl-3-ethylimidazolium tetrafluoroborate (IL (BF4)), were used. It was found that the PVDF-g-IL exhibited superior antibacterial performance, with almost the same mechanical and thermal performance as unmodified PVDF. Nonwovens and films made from PVDF-g-IL materials exhibited broad-spectrum antimicrobial activity against common bacteria and "superbugs" with the strong electrostatic interactions between ILs and microbial cell membranes. With extremely low IL loading (0.05 wt %), the cell reduction of PVDF-g-IL (Cl) nonwovens improved from 0.2 to 4.4 against S. aureus. Moreover, the antibacterial activity of PVDF-g-IL nonwovens was permanent for the covalent bonds between ILs and polymer chains. The work provides a simple strategy to immobilize ionic antibacterial agents onto polymer substrates, which may have great potential applications in healthcare and household applications.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Ionic Liquids/chemistry , Ions/chemistry , Polymers/chemistry , Polyvinyls/chemistry , Static Electricity , Surface Properties
9.
J Phys Chem B ; 121(31): 7508-7518, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28704042

ABSTRACT

Herein, we report a simple strategy to synthesize quasi-block graft copolymers using the binary phase structure of semicrystalline polymers as the template. An unsaturated ionic liquid, 1-vinyl-3-butylimidazolium bis (trifluoromethylsulfonyl) imide ([VBIm] [TFSI]), is thermodynamically miscible with poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-co-HFP)) in solution. The solidification of P(VDF-co-HFP)/[VBIm] [TFSI] blend leads to the expelling of ILs from the crystalline region and the ILs are only located in the amorphous region. The electron-beam irradiation (EBI) at the solid state of the blends results in the locally grafting of the ILs onto the polymer blocks in the amorphous region, while the EBI does not affect the chemical structure of the crystalline region. Therefore, the quasi-block graft copolymers were achieved with IL-grafted blocks segregated by the unmodified blocks. The achieved block copolymers can be microphase separated into the various nanostructures, as the block copolymers with well-defined structure, upon varying the grafting ratios. The microphase separated quasi-block grafted copolymers exhibit excellent mechanical properties and good electrical properties. The elongation at break is 480% and the stress at break is as high as 30 MPa for the sample with the lamellar-like structure having the grafting ratio of 45.4 wt%.

10.
Langmuir ; 33(6): 1368-1374, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28052672

ABSTRACT

A facile and versatile strategy for fabricating superhydrophobic surfaces with controllable electrical conductivity and water adhesion is reported. "Vine-on-fence"-structured and cerebral cortex-like superhydrophobic surfaces are constructed by filtering a suspension of multiwalled carbon nanotubes (MWCNTs), using polyoxymethylene nonwovens as the filter paper. The nonwovens with micro- and nanoporous two-tier structures act as the skeleton, introducing a microscale structure. The MWCNTs act as nanoscale structures, creating hierarchical surface roughness. The surface topography and the electrical conductivity of the superhydrophobic surfaces are controlled by varying the MWCNT loading. The vine-on-fence-structured surfaces exhibit "sticky" superhydrophobicity with high water adhesion. The cerebral cortex-like surfaces exhibit self-cleaning properties with low water adhesion. The as-prepared superhydrophobic surfaces are chemically resistant to acidic and alkaline environments of pH 2-12. They therefore have potential in applications such as droplet-based microreactors and thin-film microextraction. These findings aid our understanding of the role that surface topography plays in the design and fabrication of superhydrophobic surfaces with different water-adhesion properties.

11.
Polymers (Basel) ; 9(11)2017 Oct 28.
Article in English | MEDLINE | ID: mdl-30965866

ABSTRACT

Flexible dielectric materials with high dielectric constant and low loss have attracted significant attention. In this work, we fabricated novel polymer-based nanocomposites with both homogeneously dispersed conductive nanofillers and ion-conductive nanodomains within a polymer matrix. An unsaturated ionic liquid (IL), 1-vinyl-3-ethylimidazolium tetrafluoroborate ([VEIM][BF4]), was first coated on the surface of multi-walled carbon nanotubes (CNTs) by the mechanical grinding. The ILs coated CNTs were then well dispersed in poly(vinylidene fluoride) (PVDF) matrix by melt-blending. The ILs on the surface of CNTs were subsequently grafted onto the PVDF chains by electron beam irradiation (EBI). The formed ILs grafted PVDF (PVDF-g-IL) finally aggregated into ionic nanodomains with the size of 20⁻30 nm in the melt state. Therefore, novel PVDF nanocomposites with both homogenously dispersed CNTs and ionic nanodomains were achieved. Both carbon nanotubes and ionic nanodomains contributed to the enhancement of the dielectric constant of PVDF significantly. At the same time, such homogeneously dispersed CNTs along with the confined ions in the nandomains decreased current leakage effectively and thus led to the low dielectric loss. The final PVDF nanocomposites exhibited high dielectric constant, low dielectric loss and good flexibility, which may be promising for applications in soft/flexible devices.

12.
Nanotechnology ; 26(10): 105704, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25686531

ABSTRACT

Novel antibacterial, anti-electrostatic, and hydrophilic nanofibers based on a blend containing thermoplastic polyurethane (TPU) and a room-temperature ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], were fabricated by electrospinning. We investigated the effect of the IL on the morphology and the physical properties of the TPU nanofibers. Nanofibers with a 'bead-on-string' morphology were obtained by electrospinning from a neat TPU solution. The incorporation of the IL, at levels as low as 1 wt%, largely suppressed the formation of beads during electrospinning, and homogeneous nanofibers were obtained. The as-spun TPU/IL composite nanofibers showed significant activity against both Escherichia coli (E coli) and Staphylococcus aureus (S. aureus), with antibacterial activities of more than four and three, respectively. This means that the antibacterial efficiencies of TPU/IL composite nanofibers toward E coli and S. aureus are 99.99% and 99.9%, respectively. Moreover, nonwoven fabrics derived from the electrospun TPU/IL composite nanofibers exhibit better stretchability, elasticity, and higher electrical conductivity compared to those made using neat TPU without an IL. Additionally, the incorporation of the IL leads to a hydrophilic surface for the TPU/IL composite nanofibers compared to hydrophobic neat TPU nanofibers. These multifunctional nanofibers with excellent antibacterial, anti-electrostatic, and mechanical properties and improved hydrophilicity are promising candidates for biomedical and wastewater treatment applications.


Subject(s)
Anti-Bacterial Agents/chemistry , Materials Testing , Nanofibers/chemistry , Static Electricity , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Hydrophobic and Hydrophilic Interactions , Imidazoles/chemistry , Ionic Liquids/chemistry , Nanofibers/ultrastructure , Polyurethanes/chemistry , Staphylococcus aureus/drug effects , Textiles
13.
J Phys Chem B ; 118(25): 7167-76, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24886108

ABSTRACT

Phase diagrams and glass transition behaviors of poly(L-lactic acid)/polyoxymethylene (PLLA/POM) blends have been investigated in our previous work (Macromolecules 2013, 46, 5806-5814). In this work, the crystallization behaviors and physical properties of the PLLA/POM blends with the PLLA as the major component have been systematically studied. POM was crystallized into the fragment crystals that were finely dispersed in the PLLA matrix when cooling down from the melt of the blends. It was found that the POM fragment crystals accelerated the crystallization process of PLLA matrix and increased the final crystallinity of PLLA significantly in the blends. At the same time, the PLLA spherulites nucleated by POM fragment crystals were much smaller than those obtained from neat PLLA. It was further found that the crystallization rate of PLLA was quite dependent upon the POM loadings and the highest crystallization rate was observed at POM loadings of 7 wt %. It is considered that the POM fragment crystals take the nuclei role to initiate the crystallization of PLLA at low POM loadings, while a high content of POM in the blends leads to the large POM spherulites that cannot nucleate PLLA crystallization effectively. The obtained PLLA/POM blends at low POM loadings with small PLLA spherulites exhibited excellent optical transmittance and good mechanical performance.

14.
ACS Appl Mater Interfaces ; 6(6): 4447-57, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24598382

ABSTRACT

Novel anti-static nanofibers based on blends of poly(vinylidene fluoride) (PVDF) and a room-temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], were fabricated using an electrospinning approach. The effects of the RTIL on the morphology, crystal structure, and physical properties of the PVDF nanofibers were investigated. Incorporation of RTIL leads to an increase in the mean fiber diameter and the rough fiber surface of the PVDF/RTIL composite nanofibers compared with the neat PVDF nanofibers. The PVDF in the PVDF/RTIL nanofibers exhibits an extremely high content (almost 100%) of ß crystals, in contrast to the dominance of PVDF γ crystals in bulk melt-blended PVDF/RTIL blends. Nonwoven fabrics produced from the electrospun PVDF/RTIL composite nanofibers show better stretchability and higher electrical conductivity than those made from neat PVDF without RTIL, and are thus excellent antielectrostatic fibrous materials. In addition, RTIL greatly improved the hydrophobicity of the PVDF fibers, enabling them to effectively separate a mixture of tetrachloromethane (CCl4) and water. The extremely high ß content, excellent antielectrostatic properties, better stretchability, and hydrophobicity of the present PVDF/RTIL nanofibers make them a promising candidate for micro- and nanoscale electronic device applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...