Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(13): e2313652121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38498709

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The repeat-expanded HTT encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown. Here, we show that HTT interacts with both exonuclease 1 (Exo1) and MutLα (MLH1-PMS2), a negative regulator of Exo1. While the HTT-Exo1 interaction suppresses the Exo1-catalyzed DNA end resection during DSB repair, the HTT-MutLα interaction functions to stabilize MLH1. However, mHTT displays a significantly reduced interaction with Exo1 or MutLα, thereby losing the ability to regulate Exo1. Thus, cells expressing mHTT exhibit rapid MLH1 degradation and hyperactive DNA excision, which causes severe DNA damage and cytosolic DNA accumulation. This activates the cGAS-STING pathway to mediate apoptosis. Therefore, we have identified unique functions for both HTT and mHTT in modulating DNA repair and the cGAS-STING pathway-mediated apoptosis by interacting with MLH1. Our work elucidates the mechanism by which mHTT causes HD.


Subject(s)
Huntington Disease , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Mutant Proteins/genetics , Huntington Disease/genetics , Huntington Disease/metabolism , Nucleotidyltransferases/genetics , DNA , Apoptosis/genetics , MutL Protein Homolog 1/genetics
2.
Cancer Res ; 83(22): 3767-3782, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37646571

ABSTRACT

The chemotherapeutic agent 5-fluorouracil (5-FU) remains the backbone of postoperative adjuvant treatment for gastric cancer. However, fewer than half of patients with gastric cancer benefit from 5-FU-based chemotherapies owing to chemoresistance and limited clinical biomarkers. Here, we identified the SNF2 protein Polo-like kinase 1-interacting checkpoint helicase (PICH) as a predictor of 5-FU chemosensitivity and characterized a transcriptional function of PICH distinct from its role in chromosome separation. PICH formed a transcriptional complex with RNA polymerase II (Pol II) and ATF4 at the CCNA1 promoter in an ATPase-dependent manner. Binding of the PICH complex promoted cyclin A1 transcription and accelerated S-phase progression. Overexpressed PICH impaired 5-FU chemosensitivity in human organoids and patient-derived xenografts. Furthermore, elevated PICH expression was negatively correlated with survival in postoperative patients receiving 5-FU chemotherapy. Together, these findings reveal an ATPase-dependent transcriptional function of PICH that promotes cyclin A1 transcription to drive 5-FU chemoresistance, providing a potential predictive biomarker of 5-FU chemosensitivity for postoperative patients with gastric cancer and prompting further investigation into the transcriptional activity of PICH. SIGNIFICANCE: PICH binds Pol II and ATF4 in an ATPase-dependent manner to form a transcriptional complex that promotes cyclin A1 expression, accelerates S-phase progression, and impairs 5-FU chemosensitivity in gastric cancer.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Cyclin A1 , DNA Helicases/metabolism , Fluorouracil/pharmacology , Adenosine Triphosphatases/therapeutic use , Polo-Like Kinase 1
3.
NAR Cancer ; 5(3): zcad031, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37325548

ABSTRACT

Tumors defective in DNA mismatch repair (dMMR) exhibit microsatellite instability (MSI). Currently, patients with dMMR tumors are benefitted from anti-PD-1/PDL1-based immune checkpoint inhibitor (ICI) therapy. Over the past several years, great progress has been made in understanding the mechanisms by which dMMR tumors respond to ICI, including the identification of mutator phenotype-generated neoantigens, cytosolic DNA-mediated activation of the cGAS-STING pathway, type-I interferon signaling and high tumor-infiltration of lymphocytes in dMMR tumors. Although ICI therapy shows great clinical benefits, ∼50% of dMMR tumors are eventually not responsive. Here we review the discovery, development and molecular basis of dMMR-mediated immunotherapy, as well as tumor resistant problems and potential therapeutic interventions to overcome the resistance.

4.
Gastroenterology ; 164(7): 1232-1247, 2023 06.
Article in English | MEDLINE | ID: mdl-36842710

ABSTRACT

BACKGROUND & AIMS: Although small patient subsets benefit from current targeted strategies or immunotherapy, gemcitabine remains the first-line drug for pancreatic cancer (PC) treatment. However, gemcitabine resistance is widespread and compromises long-term survival. Here, we identified ubiquitin-conjugating enzyme E2T (UBE2T) as a potential therapeutic target to combat gemcitabine resistance in PC. METHODS: Proteomics and metabolomics were combined to examine the effect of UBE2T on pyrimidine metabolism remodeling. Spontaneous PC mice (LSL-KrasG12D/+, LSL-Trp53R172H/+, Pdx1-Cre; KPC) with Ube2t-conditional knockout, organoids, and large-scale clinical samples were used to determine the effect of UBE2T on gemcitabine efficacy. Organoids, patient-derived xenografts (PDX), and KPC mice were used to examine the efficacy of the combination of a UBE2T inhibitor and gemcitabine. RESULTS: Spontaneous PC mice with Ube2t deletion had a marked survival advantage after gemcitabine treatment, and UBE2T levels were positively correlated with gemcitabine resistance in clinical patients. Mechanistically, UBE2T catalyzes ring finger protein 1 (RING1)-mediated ubiquitination of p53 and relieves the transcriptional repression of ribonucleotide reductase subunits M1 and M2, resulting in unrestrained pyrimidine biosynthesis and alleviation of replication stress. Additionally, high-throughput compound library screening using organoids identified pentagalloylglucose (PGG) as a potent UBE2T inhibitor and gemcitabine sensitizer. The combination of gemcitabine and PGG diminished tumor growth in PDX models and prolonged long-term survival in spontaneous PC mice. CONCLUSIONS: Collectively, UBE2T-mediated p53 degradation confers PC gemcitabine resistance by promoting pyrimidine biosynthesis and alleviating replication stress. This study offers an opportunity to improve PC survival by targeting UBE2T and develop a promising gemcitabine sensitizer in clinical translation setting.


Subject(s)
Gemcitabine , Pancreatic Neoplasms , Humans , Mice , Animals , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Tumor Suppressor Protein p53/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Disease Models, Animal , Cell Line, Tumor , Pancreatic Neoplasms
5.
Nucleic Acids Res ; 50(10): 5635-5651, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35580045

ABSTRACT

Non-homologous end joining (NHEJ) is the major pathway that mediates the repair of DNA double-strand breaks (DSBs) generated by ionizing radiation (IR). Previously, the DNA helicase RECQL4 was implicated in promoting NHEJ, but its role in the pathway remains unresolved. In this study, we report that RECQL4 stabilizes the NHEJ machinery at DSBs to promote repair. Specifically, we find that RECQL4 interacts with the NHEJ core factor DNA-PKcs and the interaction is increased following IR. RECQL4 promotes DNA end bridging mediated by DNA-PKcs and Ku70/80 in vitro and the accumulation/retention of NHEJ factors at DSBs in vivo. Moreover, interaction between DNA-PKcs and the other core NHEJ proteins following IR treatment is attenuated in the absence of RECQL4. These data indicate that RECQL4 promotes the stabilization of the NHEJ factors at DSBs to support formation of the NHEJ long-range synaptic complex. In addition, we observed that the kinase activity of DNA-PKcs is required for accumulation of RECQL4 to DSBs and that DNA-PKcs phosphorylates RECQL4 at six serine/threonine residues. Blocking phosphorylation at these sites reduced the recruitment of RECQL4 to DSBs, attenuated the interaction between RECQL4 and NHEJ factors, destabilized interactions between the NHEJ machinery, and resulted in decreased NHEJ. Collectively, these data illustrate reciprocal regulation between RECQL4 and DNA-PKcs in NHEJ.


Subject(s)
DNA Breaks, Double-Stranded , DNA-Binding Proteins , DNA/genetics , DNA/metabolism , DNA End-Joining Repair , DNA Repair , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Phosphorylation , RecQ Helicases/genetics , RecQ Helicases/metabolism
6.
Aging (Albany NY) ; 14(1): 462-476, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017318

ABSTRACT

Intracerebral hemorrhage (ICH) is a common neurological condition that causes severe disability and even death. Even though the mechanism is not clear, increasing evidence shows the efficacy of atorvastatin on treating ICH. In this study, we examined the impact of atorvastatin on the NOD-like receptor protein 3 (NLRP3) inflammasome and inflammatory pathways following ICH. Mouse models of ICH were established by collagenase injection in adult C57BL/6 mice. IHC mice received atorvastatin treatment 2 h after hematoma establishment. First, the changes of glial cells and neurons in the brains of ICH patients and mice were detected by immunohistochemistry and western blotting. Second, the molecular mechanisms underlying the microglial activation and neuronal loss were evaluated after the application of atorvastatin. Finally, the behavioral deficits of ICH mice without or with the treatment of atorvastatin were determined by neurological defect scores. The results demonstrated that atorvastatin significantly deactivated glial cells by reducing the expression of glial fibrillary acidic protein (GFAP), Ionized calcium binding adapter molecule 1 (Iba1), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in ICH model mice. For inflammasomes, atorvastatin also showed its efficacy by decreasing the expression of NLRP3, cleaved caspase-1, and IL-1ß in ICH mice. Moreover, atorvastatin markedly inhibited the upregulation of toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88), which indicated deactivation of NLRP3 inflammasomes. By inhibiting the activities of inflammasomes in glial cells, neuronal loss was partially prevented by suppressing the apoptosis in the brains of ICH mice, protecting them from neurological defects.


Subject(s)
Atorvastatin/pharmacology , Gene Expression Regulation/drug effects , Myeloid Differentiation Factor 88/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cerebral Hemorrhage , Cytokines/genetics , Cytokines/metabolism , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neurons/drug effects , Signal Transduction , Toll-Like Receptor 4/genetics
7.
Cancer Cell ; 39(1): 96-108.e6, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33338425

ABSTRACT

Increased neoantigens in hypermutated cancers with DNA mismatch repair deficiency (dMMR) are proposed as the major contributor to the high objective response rate in anti-PD-1 therapy. However, the mechanism of drug resistance is not fully understood. Using tumor models defective in the MMR gene Mlh1 (dMLH1), we show that dMLH1 tumor cells accumulate cytosolic DNA and produce IFN-ß in a cGAS-STING-dependent manner, which renders dMLH1 tumors slowly progressive and highly sensitive to checkpoint blockade. In neoantigen-fixed models, dMLH1 tumors potently induce T cell priming and lose resistance to checkpoint therapy independent of tumor mutational burden. Accordingly, loss of STING or cGAS in tumor cells decreases tumor infiltration of T cells and endows resistance to checkpoint blockade. Clinically, downregulation of cGAS/STING in human dMMR cancers correlates with poor prognosis. We conclude that DNA sensing within tumor cells is essential for dMMR-triggered anti-tumor immunity. This study provides new mechanisms and biomarkers for anti-dMMR-cancer immunotherapy.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Membrane Proteins/genetics , MutL Protein Homolog 1/deficiency , Neoplasms/genetics , Nucleotidyltransferases/genetics , Animals , Cell Line, Tumor , DNA Mismatch Repair , Down-Regulation , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Interferon-beta/metabolism , Membrane Proteins/metabolism , Mice , Neoplasm Transplantation , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Nucleotidyltransferases/metabolism , Prognosis , Signal Transduction/drug effects
8.
Cancer Cell ; 39(1): 109-121.e5, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33338427

ABSTRACT

Tumors with defective mismatch repair (dMMR) are responsive to immunotherapy because of dMMR-induced neoantigens and activation of the cGAS-STING pathway. While neoantigens result from the hypermutable nature of dMMR, it is unknown how dMMR activates the cGAS-STING pathway. We show here that loss of the MutLα subunit MLH1, whose defect is responsible for ~50% of dMMR cancers, results in loss of MutLα-specific regulation of exonuclease 1 (Exo1) during DNA repair. This leads to unrestrained DNA excision by Exo1, which causes increased single-strand DNA formation, RPA exhaustion, DNA breaks, and aberrant DNA repair intermediates. Ultimately, this generates chromosomal abnormalities and the release of nuclear DNA into the cytoplasm, activating the cGAS-STING pathway. In this study, we discovered a hitherto unknown MMR mechanism that modulates genome stability and has implications for cancer therapy.


Subject(s)
Chromosome Aberrations , DNA Repair Enzymes/metabolism , Exodeoxyribonucleases/metabolism , MutL Protein Homolog 1/deficiency , Neoplasms/genetics , Signal Transduction , Animals , Cell Line, Tumor , DNA Breaks, Single-Stranded , DNA Mismatch Repair , DNA Repair , DNA, Single-Stranded/metabolism , HeLa Cells , Humans , Membrane Proteins/metabolism , Mice , MutL Protein Homolog 1/metabolism , Neoplasms/metabolism , Nucleotidyltransferases/metabolism , Replication Protein A/metabolism
9.
J Cancer ; 10(13): 2961-2968, 2019.
Article in English | MEDLINE | ID: mdl-31281473

ABSTRACT

LncRNAs have been proved to be involved in the promotion of glioma cell malignant development. However, the exact roles and molecular mechanisms of linc01023 in glioma remain blurred. In this study, we confirm linc01023 is up-regulated in glioma tissues and cell lines. In addition, elevated linc01023 expression indicates shorter survival times in patients with glioma. Moreover, loss-of-function studies reveal that restoration of linc01023 restrains glioma cell proliferation, migration and invasion by regulating IGF1R/AKT pathway in vitro and in vivo. Collectively, the study indicates that linc01023 plays an oncogenic role in glioma through activation of IGF1R/AKT signal pathway, and it could be a candidate therapeutic target.

10.
Biochem Biophys Res Commun ; 508(4): 1240-1244, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30563767

ABSTRACT

Genome integrity is important for cell growth, development and proliferation. The E3 ligase RAD18 plays a vital role in the DNA damage response (DDR) to maintain genome integrity. Recent studies reveal that RAD18 has non-ubiquitinated and mono-ubiquitinated form in normal cells. However, whether RAD18 undergoes other post-translational modification remains to be investigated. Here we show that RAD18 is a target of NEDD8, an ubiquitin-like protein. In response to hydrogen peroxide (H2O2)-induced oxidative stress, RAD18 NEDDylation increases significantly, while its ubiquitination decreases. Moreover, NEDD8 overexpression or deNEDDylase NEDP1 deletion further antagonizes RAD18 ubiquitination. In addition, treatment with MLN4924, an inhibitor of NEDD8-activating Enzyme, reduces the interaction between PCNA and RAD18, which blocks the localization of RAD18 to form foci, and thus inhibiting polymerase η recruitment after oxidative stress. Together, our study demonstrates that RAD18 NEDDylation regulates its localization and involves in the DDR pathway by modulating RAD18 ubiquitination.


Subject(s)
DNA Damage , DNA-Binding Proteins/metabolism , NEDD8 Protein/metabolism , Oxidative Stress , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , DNA-Directed DNA Polymerase/metabolism , HEK293 Cells , HeLa Cells , Humans , Hydrogen Peroxide/toxicity , Protein Transport , Substrate Specificity
11.
Pathol Res Pract ; 214(9): 1474-1481, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30107990

ABSTRACT

Long non-coding RNA urothelial carcinoma associated 1 (lncRNA UCA1) promotes cancer progression and enhances chemoresistance through miR-204-5p in a few cancers. However, no studies have investigated whether UCA1 regulates glioma metastasis through miR-204-5p and its target. In the present study, cell migration, invasion and epithelial-mesenchymal transition (EMT) were evaluated in glioma cells overexpressing UCA1. The relationships among UCA1, miR-204-5p and ZEB1 were examined by real-time PCR, western blotting and dual-luciferase reporter assays. The effect of UCA1 knockdown on xenograft tumor growth was investigated. The levels of miR-204-5p, fibronectin, COL5 A1 and ZEB1 in tumor tissues were also determined. The results showed that UCA1 overexpression promoted cell migration, invasion and EMT. UCA1 interacted with miR-204-5p and decreased its level. ZEB1 was identified as a direct target of miR-204-5p and miR-204-5p negatively regulated ZEB1 expression. Moreover, UCA1 sponged miR-204-5p and partially rescued the inhibitory effect of miR-204-5p on ZEB1. In our in vivo studies, UCA1 knockdown reduced tumor volume and tumor weight. In addition, the levels of fibronectin, COL5 A1 and ZEB1 were decreased, while miR-204-5p level was increased. The present study provides the first evidence that UCA1 promotes glioma metastasis through the miR-204-5p/ZEB1 axis, contributing to the understanding of the pathogenesis of glioma.


Subject(s)
Brain Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Glioma/pathology , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Zinc Finger E-box-Binding Homeobox 1/biosynthesis , Animals , Brain Neoplasms/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic/genetics , Glioma/genetics , Heterografts , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Up-Regulation , Zinc Finger E-box-Binding Homeobox 1/genetics
12.
Transl Neurosci ; 9: 26-32, 2018.
Article in English | MEDLINE | ID: mdl-29992050

ABSTRACT

BACKGROUND: The pathophysiology of early brain injury (EBI) after subarachnoid hemorrhage (SAH) is poorly understood. The present study evaluates the influence of zinc transporter 3 (ZnT3) knockout and the depletion of vesicular zinc on EBI. METHODOLOGY: SAH was induced in ZnT3 KO mice by internal carotid artery perforation. The changes in behavior were recorded at 24 hours after SAH. Hematoxylin-eosin, Nissl and TUNEL staining were performed to evaluate neuronal apoptosis. Data from mice with a score of 8-12 in intracerebral bleeding (i.e. moderate SAH), were analyzed. RESULTS: The degree of SAH-induced neuronal injury was directly correlated to the amount of blood lost, which in turn was negatively reflected in their behavior. The Wild Type (WT)-SAH group behaved poorly when compared to the knockout (KO)-SAH mice and their poor neurological score was accompanied by an increase in the number of apoptotic neurons. Conversely, the improvement of behavior in the KO-SAH group was associated with a marked reduction in apoptotic neurons. CONCLUSIONS: These results suggest that ZnT3 knockout may have played a vital role in the attenuation of neuronal injury after SAH and that ZnT3 may prove to be a potential therapeutic target for neuroprotection in EBI.

13.
Protein Cell ; 9(4): 365-379, 2018 04.
Article in English | MEDLINE | ID: mdl-28831681

ABSTRACT

NEDDylation has been shown to participate in the DNA damage pathway, but the substrates of neural precursor cell expressed developmentally downregulated 8 (NEDD8) and the roles of NEDDylation involved in the DNA damage response (DDR) are largely unknown. Translesion synthesis (TLS) is a damage-tolerance mechanism, in which RAD18/RAD6-mediated monoubiquitinated proliferating cell nuclear antigen (PCNA) promotes recruitment of polymerase η (polη) to bypass lesions. Here we identify PCNA as a substrate of NEDD8, and show that E3 ligase RAD18-catalyzed PCNA NEDDylation antagonizes its ubiquitination. In addition, NEDP1 acts as the deNEDDylase of PCNA, and NEDP1 deletion enhances PCNA NEDDylation but reduces its ubiquitination. In response to H2O2 stimulation, NEDP1 disassociates from PCNA and RAD18-dependent PCNA NEDDylation increases markedly after its ubiquitination. Impairment of NEDDylation by Ubc12 knockout enhances PCNA ubiquitination and promotes PCNA-polη interaction, while up-regulation of NEDDylation by NEDD8 overexpression or NEDP1 deletion reduces the excessive accumulation of ubiquitinated PCNA, thus inhibits PCNA-polη interaction and blocks polη foci formation. Moreover, Ubc12 knockout decreases cell sensitivity to H2O2-induced oxidative stress, but NEDP1 deletion aggravates this sensitivity. Collectively, our study elucidates the important role of NEDDylation in the DDR as a modulator of PCNA monoubiquitination and polη recruitment.


Subject(s)
Endopeptidases/genetics , NEDD8 Protein/genetics , Proliferating Cell Nuclear Antigen/genetics , Ubiquitin-Conjugating Enzymes/genetics , DNA Damage/drug effects , DNA Repair/genetics , DNA Replication/genetics , DNA-Binding Proteins/genetics , DNA-Directed DNA Polymerase/genetics , Gene Knockout Techniques , Humans , Hydrogen Peroxide/toxicity , Oxidative Stress/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , Ultraviolet Rays
14.
Oncotarget ; 8(39): 65969-65982, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-29029486

ABSTRACT

Epidermal growth factor (EGF) and EGF receptor (EGFR) play prominent roles in the metastasis of glioblastoma (GBM). However, the molecular mechanisms for the function of EGF and EGFR in GBM metastasis have not been elucidated. Herein, we demonstrate that coactivation of EGF and EGFR drives tumor metastasis in a matrix metalloproteinase-9 (MMP-9)-dependent manner. Expression levels of EGF, EGFR, and MMP-9 were substantially upregulated in the GBM and edema zones of patients, compared with those of paired unaffected participants. Secretion of EGF and MMP-9 was reduced in the cerebrospinal fluid (CSF) after removing GBM for 2 weeks by operation. To the mechanism, MMP-9 was upregulated by activating EGF and EGFR via PI3K/AKT- and ERK1/2-dependent pathways. Moreover, signal transducer and activator of transcription (STAT) 3 and STAT5 mediated the activation of NF-κB by PI3K/AKT and ERK1/2 pathways. This resulted in transactivation of MMP-9 in GBM. Finally, MMP-9 induction facilitated abnormal proliferation, migration, and invasion of cells, which contributed to GBM metastasis.

15.
Biochem Cell Biol ; 95(4): 459-467, 2017 08.
Article in English | MEDLINE | ID: mdl-28257582

ABSTRACT

Stroke is a common cerebrovascular disease in aging populations, and constitutes the second highest principle cause of mortality and the principle cause of permanent disability, and ischemic stroke is the primary form. Osthole is a coumarin derivative extracted from the fruits of Cnidium monnieri (L.) Cusson. In this study, we established a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) in vivo and found that MCAO/R caused cerebral infarction, hippocampus neuronal injury and apoptosis, and also activated the Notch 1 signaling pathway. However, treatment with osthole further enhanced the activity of Notch 1 signaling and reduced the cerebral infarction as well as the hippocampus neuronal injury and apoptosis induced by MCAO/R in a dose-dependent manner. The same results were observed in a primary neuronal oxygen glucose deficiency/reperfusion (OGD/R) model in vitro, and the effect of osthole could be blocked by an inhibitor of Notch 1 signaling, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine tert-butyl ester (DAPT). Therefore, we demonstrated that osthole injection prevented rat ischemia-reperfusion injury via activating the Notch 1 signaling pathway in vivo and in vitro in a dose-dependent manner, which may be significant for clinical treatment of ischemic stroke.


Subject(s)
Brain Ischemia/prevention & control , Coumarins/pharmacology , Receptors, Notch/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Signal Transduction/drug effects , Animals , Brain Ischemia/metabolism , Coumarins/administration & dosage , Male , Rats , Rats, Sprague-Dawley
16.
J Biol Chem ; 292(20): 8472-8483, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28348081

ABSTRACT

Herpes simplex virus 1 (HSV-1) infection manipulates distinct host DNA-damage responses to facilitate virus proliferation, but the molecular mechanisms remain to be elucidated. One possible HSV-1 target might be DNA damage-tolerance mechanisms, such as the translesion synthesis (TLS) pathway. In TLS, proliferating cell nuclear antigen (PCNA) is monoubiquitinated in response to DNA damage-caused replication fork stalling. Ubiquitinated PCNA then facilitates the error-prone DNA polymerase η (polη)-mediated TLS, allowing the fork to bypass damaged sites. Because of the involvement of PCNA ubiquitination in DNA-damage repair, we hypothesized that the function of PCNA might be altered by HSV-1. Here we show that PCNA is a substrate of the HSV-1 deubiquitinase UL36USP, which has previously been shown to be involved mainly in virus uptake and maturation. In HSV-1-infected cells, viral infection-associated UL36USP consistently reduced PCNA ubiquitination. The deubiquitination of PCNA inhibited the formation of polη foci and also increased cell sensitivity to DNA-damage agents. Moreover, the catalytically inactive mutant UL36C40A failed to deubiquitinate PCNA. Of note, the levels of virus marker genes increased strikingly in cells infected with wild-type HSV-1, but only moderately in UL36C40A mutant virus-infected cells, indicating that the UL36USP deubiquitinating activity supports HSV-1 virus replication during infection. These findings suggest a role of UL36USP in the DNA damage-response pathway.


Subject(s)
DNA Repair , Deubiquitinating Enzymes/metabolism , Herpesvirus 1, Human/physiology , Proliferating Cell Nuclear Antigen/metabolism , Viral Proteins/metabolism , Virus Replication/physiology , Amino Acid Substitution , Animals , Chlorocebus aethiops , DNA Damage , Deubiquitinating Enzymes/genetics , HeLa Cells , Humans , Mutation, Missense , Proliferating Cell Nuclear Antigen/genetics , Vero Cells , Viral Proteins/genetics
17.
Biochem Biophys Res Commun ; 482(4): 632-637, 2017 Jan 22.
Article in English | MEDLINE | ID: mdl-27864145

ABSTRACT

Myeloid differentiation factor 88 (MyD88) plays a central role in innate immunity response, however, how its activity is tightly regulated remains largely unknown. In this study, we identify MyD88 as a novel substrate of NEDD8, and demonstrate that MyD88 NEDDylation antagonizes its ubiquitination. Interestingly, in response to the stimulation of IL-1ß, MyD88 NEDDylation is downregulated while its ubiquitination is upregulated. We also show that deNEDDylase NEDP1 serves as a regulator of this process. Furthermore, we demonstrate that NEDD8 negatively regulates the dimerization of MyD88 and suppresses MyD88-dependent NF-κB signaling. Taken together, this study reveals that NEDDylation of MyD88 regulates NF-κB activity through antagonizing its ubiquitination, suggesting a novel mechanism of modulating NF-κB signaling pathway.


Subject(s)
Myeloid Differentiation Factor 88/immunology , NF-kappa B/immunology , Ubiquitination , Ubiquitins/immunology , Endopeptidases/immunology , HEK293 Cells , Humans , Immunity, Innate , Interleukin-1beta/immunology , NEDD8 Protein , Signal Transduction
18.
Clin Exp Pharmacol Physiol ; 43(1): 125-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26385023

ABSTRACT

Bone morphogenetic protein (BMP)-7 mediated neuroprotective effect of cerebral ischemic preconditioning (IPC) has been studied in an ischemic animal model, but the underlying cellular mechanisms have not been clearly clarified. In this study, primary cortical neurons and the SH-SY5Y cell line were used to investigate the role of BMP-7 and its downstream signals in the neuroprotective effects of oxygen-glucose deprivation preconditioning (OGDPC). Immunocytochemistry was used to detect the expression of neurofilament in neurons. MTT and lactate dehydrogenase activity assays were used to measure the cytotoxicity. Western blot was used to detect the protein expression of BMP-7 and downstream signals. BMP inhibitor, mitogen-activated protein kinase inhibitors, Smad inhibitor and siRNA of Smad 1 were used to investigate the role of corresponding signalling pathways in the OGDPC. Results showed that OGDPC-induced overexpression of BMP-7 in primary cortical neurons and SH-SY5Y cells. Both of endogenous and exogenous BMP-7 could replicate the neuroprotective effects seen in OGDPC pretreatment. In addition, extracellular regulated protein kinases, p38 and Smad signalling pathway were found to be involved in the neuroprotective effects mediated by OGDPC via BMP-7. This study primarily reveals the cellular mechanisms of the neuroprotection mediated by OGDPC, and provides evidence for better understanding of this intrinsic factor against ischemia.


Subject(s)
Bone Morphogenetic Protein 7/metabolism , Glucose/deficiency , Ischemic Preconditioning , MAP Kinase Signaling System , Myocardial Reperfusion Injury/pathology , Neurons/pathology , Oxygen/metabolism , Animals , Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein 7/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , MAP Kinase Signaling System/drug effects , Myocardial Reperfusion Injury/metabolism , Neurons/metabolism , Neuroprotection/drug effects , Rats , Smad Proteins/metabolism , Up-Regulation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
19.
J Neurol Sci ; 348(1-2): 181-7, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25510379

ABSTRACT

BACKGROUND: Glioma is the most common and lethal primary brain tumors, and is regarded as one of the deadliest of human cancers. To date, a growing number of studies have tested the diagnostic accuracy of microRNAs (miRNAs) in glioma detection and altered levels of characteristic miRNAs have also been identified in glioma. However, there are some conflicting conclusions. Thus, we conducted this meta-analysis to evaluate the overall accuracy of miRNAs in the diagnosis of glioma. METHODS: A comprehensive literature search was conducted using a combination of keywords. The random effect model was used to calculate the pooled diagnostic parameters. The summary receiver operator characteristic (SROC) curves were plotted to assess the overall diagnostic performance of miRNAs. Subgroup and sensitivity analyses were conducted to analyze the potential sources of heterogeneity. RESULTS: In total, 28 studies from 11 articles covering 1729 patients and 1491 controls were available in this meta-analysis. The pooled sensitivity, specificity, PLR, NLR, DOR, and AUC were 0.87 (95% CI: 0.83-0.91), 0.87 (95% CI: 0.81-0.91), 6.6 (95% CI: 4.5-9.6), 0.15 (95% CI: 0.10-0.21), 45 (95% CI: 23-90), and 0.93 (95% CI: 0.91-0.95), respectively. Subgroup analysis demonstrated that panels of multiple miRNAs could largely improve the diagnostic accuracy. An independent meta-analysis of five included studies was conducted to evaluate the diagnostic efficacy of miR-21 in patients with glioma, with a pooled sensitivity of 0.82, specificity of 0.94, PLR of 13.2, NLR of 0.19, DOR of 69 and AUC of 0.95. CONCLUSION: This meta-analysis indicated the great potential of miRNAs, especially panels of multiple miRNAs, as promising biomarkers in glioma detection and monitoring. As one of the most representative miRNAs, we also found that a single miR-21 could be a powerful clinical biomarker in glioma diagnosis.


Subject(s)
Biomarkers, Tumor/metabolism , Glioma/diagnosis , MicroRNAs/metabolism , Humans
20.
Inflammation ; 37(4): 1289-96, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24682853

ABSTRACT

Cerebral ischemic preconditioning (IPC), which refers to a transient and noninjurious ischemia is able to induce tolerance against the subsequent lethal ischemia, including ischemic stroke. We have previously reported that bone morphogenic protein-7 (BMP-7) contributes to the neuroprotective effects of IPC-induced ischemic tolerance, and thus ameliorates the following ischemia/reperfusion (I/R) injury in rats. Consequently, in the present study, we continued to explore the underlying regulatory mechanisms involved in BMP-7-mediated cerebral IPC in the rat model of ischemic tolerance. Male Wistar rats were preconditioned by 15-min middle cerebral artery occlusion (MCAO). After 2-day reperfusion, these animals were subjected to prolonged MCAO for 2 h. Our results showed that the phosphorylated p38 mitogen-activated protein kinase (MAPK) paralleling to BMP-7 was up-regulated by IPC in rat brain. Inactivation of p38 MAPK by pretreatment of SB203580, a p38 MAPK-specific suppressor, weakened the protective effect of IPC on CA1 neurons. Moreover, the enhanced phosphorylation of p38 MAPK induced by IPC was attenuated when the endogenous BMP-7 was inhibited by BMP-7 antagonist noggin. Besides, blockade of p38 MAPK signal transduction pathway via SB203580 abrogated the protective effects of exogenous BMP-7 against cerebral infraction. These present findings suggest that BMP-7 contributes to cerebral IPC-induced ischemic tolerance via activating p38 MAPK signaling pathway.


Subject(s)
Bone Morphogenetic Protein 7/metabolism , Brain Ischemia/pathology , Infarction, Middle Cerebral Artery/physiopathology , Ischemic Preconditioning/methods , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Brain/pathology , Imidazoles/chemistry , Male , Phosphorylation , Pyridines/chemistry , Rats , Rats, Wistar , Reperfusion Injury/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...