Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
JCI Insight ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842940

ABSTRACT

Loss of ferroptosis contributes to the development of human cancer, and restoration of ferroptosis has been demonstrated as a potential therapeutic strategy in cancer treatment. However, the mechanisms of how ferroptosis escape contributes to ovarian cancer (OV) development are not well elucidated. Here we show that ferroptosis negative regulation (FNR) signatures correlated with the tumorigenesis of OV and were associated with poor prognosis, suggesting that restoration of ferroptosis represents a potential therapeutic strategy in OV. High throughput drug screening with a kinase inhibitor library identified MEK inhibitors as ferroptosis inducers in OV cells. We further demonstrated that MEK inhibitor resistant OV cells were less vulnerable to trametinib-induced ferroptosis. Mechanistically, mTOR/4EBP1 signaling promoted SLC7A11 protein synthesis, leading to ferroptosis inhibition in MEK inhibitor resistant cells. Dual inhibition of MEK and mTOR/4EBP1 signaling restrained the protein synthesis of SLC7A11 via suppression of the mTOR-4EBP1 activity to reactivate ferroptosis in resistant cells. Together, these findings provide a promising therapeutic option for OV treatment through ferroptosis restoration by the combined inhibition of MEK and mTOR/4EBP1 pathways.

2.
Cancers (Basel) ; 16(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38398194

ABSTRACT

Cholangiocarcinomas (CCA) pose a complex challenge in oncology due to diverse etiologies, necessitating tailored therapeutic approaches. This review discusses the risk factors, molecular pathology, and current therapeutic options for CCA and explores the emerging strategies encompassing targeted therapies, immunotherapy, novel compounds from natural sources, and modulation of gut microbiota. CCA are driven by an intricate landscape of genetic mutations, epigenetic dysregulation, and post-transcriptional modification, which differs based on geography (e.g., for liver fluke versus non-liver fluke-driven CCA) and exposure to environmental carcinogens (e.g., exposure to aristolochic acid). Liquid biopsy, including circulating cell-free DNA, is a potential diagnostic tool for CCA, which warrants further investigations. Currently, surgical resection is the primary curative treatment for CCA despite the technical challenges. Adjuvant chemotherapy, including cisplatin and gemcitabine, is standard for advanced, unresectable, or recurrent CCA. Second-line therapy options, such as FOLFOX (oxaliplatin and 5-FU), and the significance of radiation therapy in adjuvant, neoadjuvant, and palliative settings are also discussed. This review underscores the need for personalized therapies and demonstrates the shift towards precision medicine in CCA treatment. The development of targeted therapies, including FDA-approved drugs inhibiting FGFR2 gene fusions and IDH1 mutations, is of major research focus. Investigations into immune checkpoint inhibitors have also revealed potential clinical benefits, although improvements in survival remain elusive, especially across patient demographics. Novel compounds from natural sources exhibit anti-CCA activity, while microbiota dysbiosis emerges as a potential contributor to CCA progression, necessitating further exploration of their direct impact and mechanisms through in-depth research and clinical studies. In the future, extensive translational research efforts are imperative to bridge existing gaps and optimize therapeutic strategies to improve therapeutic outcomes for this complex malignancy.

3.
Proc Natl Acad Sci U S A ; 121(6): e2304619121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38289962

ABSTRACT

Resistance to neoadjuvant chemotherapy leads to poor prognosis of locally advanced rectal cancer (LARC), representing an unmet clinical need that demands further exploration of therapeutic strategies to improve clinical outcomes. Here, we identified a noncanonical role of RB1 for modulating chromatin activity that contributes to oxaliplatin resistance in colorectal cancer (CRC). We demonstrate that oxaliplatin induces RB1 phosphorylation, which is associated with the resistance to neoadjuvant oxaliplatin-based chemotherapy in LARC. Inhibition of RB1 phosphorylation by CDK4/6 inhibitor results in vulnerability to oxaliplatin in both intrinsic and acquired chemoresistant CRC. Mechanistically, we show that RB1 modulates chromatin activity through the TEAD4/HDAC1 complex to epigenetically suppress the expression of DNA repair genes. Antagonizing RB1 phosphorylation through CDK4/6 inhibition enforces RB1/TEAD4/HDAC1 repressor activity, leading to DNA repair defects, thus sensitizing oxaliplatin treatment in LARC. Our study identifies a RB1 function in regulating chromatin activity through TEAD4/HDAC1. It also provides the combination of CDK4/6 inhibitor with oxaliplatin as a potential synthetic lethality strategy to mitigate oxaliplatin resistance in LARC, whereby phosphorylated RB1/TEAD4 can serve as potential biomarkers to guide the patient stratification.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Oxaliplatin/pharmacology , Neoadjuvant Therapy/methods , Rectal Neoplasms/drug therapy , Rectal Neoplasms/genetics , Chemoradiotherapy/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chromatin , Treatment Outcome , TEA Domain Transcription Factors , Ubiquitin-Protein Ligases , Retinoblastoma Binding Proteins
4.
Hum Cell ; 37(1): 310-322, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070062

ABSTRACT

Solitary fibrous tumor/Hemangiopericytoma (SFT/HPC) is a rare subtype of soft tissue sarcoma harboring NAB2-STAT6 gene fusions. Mechanistic studies and therapeutic development on SFT/HPC are impeded by scarcity and lack of system models. In this study, we established and characterized a novel SFT/HPC patient-derived cell line (PDC), SFT-S1, and screened for potential drug candidates that could be repurposed for the treatment of SFT/HPC. Immunohistochemistry profiles of the PDC was consistent with the patient's tumor sample (CD99+/CD34+/desmin-). RNA sequencing, followed by Sanger sequencing confirmed the pathognomonic NAB2exon3-STAT6exon18 fusion in both the PDC and the original tumor. Transcriptomic data showed strong enrichment for oncogenic pathways (epithelial-mesenchymal transition, FGF, EGR1 and TGFß signaling pathways) in the tumor. Whole genome sequencing identified potentially pathogenic somatic variants such as MAGEA10 and ABCA2. Among a panel of 14 targeted agents screened, dasatinib was identified to be the most potent small molecule inhibitor against the PDC (IC50, 473 nM), followed by osimertinib (IC50, 730 nM) and sunitinib (IC50, 1765 nM). Methylation profiling of the tumor suggests that this specific variant of SFT/HPC could lead to genome-wide hypomethylation. In conclusion, we established a novel PDC model of SFT/HPC with comprehensive characterization of its genomic, epigenomic and transcriptomic landscape, which can facilitate future preclinical studies of SFT/HPC, such as in vitro drug screening and in vivo drug testing.


Subject(s)
Hemangiopericytoma , Solitary Fibrous Tumors , Humans , Hemangiopericytoma/genetics , Hemangiopericytoma/diagnosis , Hemangiopericytoma/metabolism , Solitary Fibrous Tumors/genetics , Solitary Fibrous Tumors/diagnosis , Solitary Fibrous Tumors/pathology , Gene Fusion , Gene Expression Profiling , Cell Line
5.
Gut ; 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38050079

ABSTRACT

OBJECTIVES: Cholangiocarcinoma (CCA) is a heterogeneous malignancy with high mortality and dismal prognosis, and an urgent clinical need for new therapies. Knowledge of the CCA epigenome is largely limited to aberrant DNA methylation. Dysregulation of enhancer activities has been identified to affect carcinogenesis and leveraged for new therapies but is uninvestigated in CCA. Our aim is to identify potential therapeutic targets in different subtypes of CCA through enhancer profiling. DESIGN: Integrative multiomics enhancer activity profiling of diverse CCA was performed. A panel of diverse CCA cell lines, patient-derived and cell line-derived xenografts were used to study identified enriched pathways and vulnerabilities. NanoString, multiplex immunohistochemistry staining and single-cell spatial transcriptomics were used to explore the immunogenicity of diverse CCA. RESULTS: We identified three distinct groups, associated with different etiologies and unique pathways. Drug inhibitors of identified pathways reduced tumour growth in in vitro and in vivo models. The first group (ESTRO), with mostly fluke-positive CCAs, displayed activation in estrogen signalling and were sensitive to MTOR inhibitors. Another group (OXPHO), with mostly BAP1 and IDH-mutant CCAs, displayed activated oxidative phosphorylation pathways, and were sensitive to oxidative phosphorylation inhibitors. Immune-related pathways were activated in the final group (IMMUN), made up of an immunogenic CCA subtype and CCA with aristolochic acid (AA) mutational signatures. Intratumour differences in AA mutation load were correlated to intratumour variation of different immune cell populations. CONCLUSION: Our study elucidates the mechanisms underlying enhancer dysregulation and deepens understanding of different tumourigenesis processes in distinct CCA subtypes, with potential significant therapeutics and clinical benefits.

6.
Cell Death Dis ; 14(8): 513, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563118

ABSTRACT

Acquired resistance to chemotherapy is one of the major causes of mortality in advanced nasopharyngeal carcinoma (NPC). However, effective strategies are limited and the underlying molecular mechanisms remain elusive. In this study, through transcriptomic profiling analysis of 23 tumor tissues, we found that NOTCH3 was aberrantly highly expressed in chemoresistance NPC patients, with NOTCH3 overexpression being positively associated with poor clinical outcome. Mechanistically, using an established NPC cellular model, we demonstrated that enhancer remodeling driven aberrant hyperactivation of NOTCH3 in chemoresistance NPC. We further showed that NOTCH3 upregulates SLUG to induce chemo-resistance of NPC cells and higher expression of SLUG have poorer prognosis. Genetic or pharmacological perturbation of NOTCH3 conferred chemosensitivity of NPC in vitro and overexpression of NOTCH3 enhanced chemoresistance of NPC in vivo. Together, these data indicated that genome-wide enhancer reprogramming activates NOTCH3 to confer chemoresistance of NPC, suggesting that targeting NOTCH3 may provide a potential therapeutic strategy to effectively treat advanced chemoresistant NPC.


Subject(s)
Drug Resistance, Neoplasm , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Regulatory Sequences, Nucleic Acid , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Receptor, Notch3/genetics , Receptor, Notch3/metabolism
7.
Mol Cancer ; 22(1): 85, 2023 05 20.
Article in English | MEDLINE | ID: mdl-37210576

ABSTRACT

BACKGROUND: Enhancer of zeste homolog 2 (EZH2), the key catalytic subunit of polycomb repressive complex 2 (PRC2), is overexpressed and plays an oncogenic role in various cancers through catalysis-dependent or catalysis-independent pathways. However, the related mechanisms contributing to ovarian cancer (OC) are not well understood. METHODS: The levels of EZH2 and H3K27me3 were evaluated in 105 OC patients by immunohistochemistry (IHC) staining, and these patients were stratified based on these levels. Canonical and noncanonical binding sites of EZH2 were defined by chromatin immunoprecipitation sequencing (ChIP-Seq). The EZH2 solo targets were obtained by integrative analysis of ChIP-Seq and RNA sequencing data. In vitro and in vivo experiments were performed to determine the role of EZH2 in OC growth. RESULTS: We showed that a subgroup of OC patients with high EZH2 expression but low H3K27me3 exhibited the worst prognosis, with limited therapeutic options. We demonstrated that induction of EZH2 degradation but not catalytic inhibition profoundly blocked OC cell proliferation and tumorigenicity in vitro and in vivo. Integrative analysis of genome-wide chromatin and transcriptome profiles revealed extensive EZH2 occupancy not only at genomic loci marked by H3K27me3 but also at promoters independent of PRC2, indicating a noncanonical role of EZH2 in OC. Mechanistically, EZH2 transcriptionally upregulated IDH2 to potentiate metabolic rewiring by enhancing tricarboxylic acid cycle (TCA cycle) activity, which contributed to the growth of OC. CONCLUSIONS: These data reveal a novel oncogenic role of EZH2 in OC and identify potential therapeutic strategies for OC by targeting the noncatalytic activity of EZH2.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Ovarian Neoplasms , Humans , Female , Enhancer of Zeste Homolog 2 Protein/genetics , Histones/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Ovarian Neoplasms/pathology , Methylation , Cell Line, Tumor
8.
Histopathology ; 83(3): 357-365, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37140543

ABSTRACT

AIMS: Juvenile fibroadenomas (JFA) are biphasic fibroepithelial lesions (FEL) usually occurring in adolescent female patients. Giant (G) JFA, like other FEL, may exhibit prominent pseudoangiomatous stromal hyperplasia (PASH)-like change. We sought to determine clinicopathological and molecular characteristics of GJFA with and without PASH. METHODS AND RESULTS: Archives were searched for cases of GJFA (1985-2020). All were stained for androgen receptor (AR), beta-catenin, CD34 and progesterone receptor (PR). Cases were sequenced using a custom 16-gene panel - MED12 (exons 1 and 2), TERT promoter (-124C>T and -146Ctable>T), SETD2, KMT2D, RARA (exons 5-9), FLNA, NF1, PIK3CA (exons 10, 11 and 21), EGFR, RB1, BCOR, TP53, PTEN, ERBB4, IGF1R and MAP3K1. Twenty-seven GJFA from 21 female patients aged 10.1-25.2 years were identified. Size ranged from 5.2 to 21 cm. Two patients had multiple, bilateral and later recurrent GJFA. Thirteen (48%) cases showed prominent PASH-like stroma. All were positive for stromal CD34, negative for AR and beta-catenin and one case showed focal PR expression. Sequencing showed MAP3K1 and SETD2 mutations in 17 samples, with KMT2D, TP53 and BCOR aberrations in 10 (45%), 10 (45%) and seven (32%) cases, respectively. Tumours with a PASH-like pattern had higher prevalence of SETD2 (P = 0.004) and TP53 (P = 0.029) mutations, while those without PASH had more RB1 mutations (P = 0.043). MED12 mutation was identified in one case. TERT promoter mutation was observed in four (18%), including two recurrences. CONCLUSIONS: Gene mutations along more advanced phases of the proposed FEL pathogenetic pathway in GJFA are unusual, and suggest a mechanism for more aggressive growth in these tumours.


Subject(s)
Breast Diseases , Breast Neoplasms , Fibroadenoma , Fibroma , Neoplasms, Fibroepithelial , Adolescent , Humans , Female , beta Catenin , Fibroadenoma/genetics , Fibroadenoma/pathology , Breast Diseases/pathology , Breast Neoplasms/pathology , Hyperplasia/genetics
9.
Commun Biol ; 6(1): 461, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37106027

ABSTRACT

Angiosarcomas are rare malignant tumors of the endothelium, arising commonly from the head and neck region (AS-HN) and recently associated with ultraviolet (UV) exposure and human herpesvirus-7 infection. We examined 81 cases of angiosarcomas, including 47 cases of AS-HN, integrating information from whole genome sequencing, gene expression profiling and spatial transcriptomics (10X Visium). In the AS-HN cohort, we observed recurrent somatic mutations in CSMD3 (18%), LRP1B (18%), MUC16 (18%), POT1 (16%) and TP53 (16%). UV-positive AS-HN harbored significantly higher tumor mutation burden than UV-negative cases (p = 0.0294). NanoString profiling identified three clusters with distinct tumor inflammation signature scores (p < 0.001). Spatial transcriptomics revealed topological profiles of the tumor microenvironment, identifying dominant but tumor-excluded inflammatory signals in immune-hot cases and immune foci even in otherwise immune-cold cases. In conclusion, spatial transcriptomics reveal the tumor immune landscape of angiosarcoma, and in combination with multi-omic information, may improve implementation of treatment strategies.


Subject(s)
Hemangiosarcoma , Humans , Hemangiosarcoma/genetics , Hemangiosarcoma/metabolism , Hemangiosarcoma/pathology , Transcriptome , Gene Expression Profiling , Tumor Microenvironment/genetics
10.
Nat Cell Biol ; 25(5): 765-777, 2023 05.
Article in English | MEDLINE | ID: mdl-37095322

ABSTRACT

PBRM1 encodes an accessory subunit of the PBAF SWI/SNF chromatin remodeller, and the inactivation of PBRM1 is a frequent event in kidney cancer. However, the impact of PBRM1 loss on chromatin remodelling is not well examined. Here we show that, in VHL-deficient renal tumours, PBRM1 deficiency results in ectopic PBAF complexes that localize to de novo genomic loci, activating the pro-tumourigenic NF-κB pathway. PBRM1-deficient PBAF complexes retain the association between SMARCA4 and ARID2, but have loosely tethered BRD7. The PBAF complexes redistribute from promoter proximal regions to distal enhancers containing NF-κB motifs, heightening NF-κB activity in PBRM1-deficient models and clinical samples. The ATPase function of SMARCA4 maintains chromatin occupancy of pre-existing and newly acquired RELA specific to PBRM1 loss, activating downstream target gene expression. Proteasome inhibitor bortezomib abrogates RELA occupancy, suppresses NF-κB activation and delays growth of PBRM1-deficient tumours. In conclusion, PBRM1 safeguards the chromatin by repressing aberrant liberation of pro-tumourigenic NF-κB target genes by residual PBRM1-deficient PBAF complexes.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Genomics , Kidney Neoplasms/metabolism , NF-kappa B/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
11.
Clin Epigenetics ; 15(1): 19, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36740715

ABSTRACT

BACKGROUND: Natural killer/T-cell lymphoma (NKTL) is a rare type of aggressive and heterogeneous non-Hodgkin's lymphoma (NHL) with a poor prognosis and limited therapeutic options. Therefore, there is an urgent need to exploit potential novel therapeutic targets for the treatment of NKTL. Histone deacetylase (HDAC) inhibitor chidamide was recently approved for treating relapsed/refractory peripheral T-cell lymphoma (PTCL) patients. However, its therapeutic efficacy in NKTL remains unclear. METHODS: We performed a phase II clinical trial to evaluate the efficacy of chidamide in 28 relapsed/refractory NKTL patients. Integrative transcriptomic, chromatin profiling analysis and functional studies were performed to identify potential predictive biomarkers and unravel the mechanisms of resistance to chidamide. Immunohistochemistry (IHC) was used to validate the predictive biomarkers in tumors from the clinical trial. RESULTS: We demonstrated that chidamide is effective in treating relapsed/refractory NKTL patients, achieving an overall response and complete response rate of 39 and 18%, respectively. In vitro studies showed that hyperactivity of JAK-STAT signaling in NKTL cell lines was associated with the resistance to chidamide. Mechanistically, our results revealed that aberrant JAK-STAT signaling remodels the chromatin and confers resistance to chidamide. Subsequently, inhibition of JAK-STAT activity could overcome resistance to chidamide by reprogramming the chromatin from a resistant to sensitive state, leading to synergistic anti-tumor effect in vitro and in vivo. More importantly, our clinical data demonstrated that combinatorial therapy with chidamide and JAK inhibitor ruxolitinib is effective against chidamide-resistant NKTL. In addition, we identified TNFRSF8 (CD30), a downstream target of the JAK-STAT pathway, as a potential biomarker that could predict NKTL sensitivity to chidamide. CONCLUSIONS: Our study suggests that chidamide, in combination with JAK-STAT inhibitors, can be a novel targeted therapy in the standard of care for NKTL. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02878278. Registered 25 August 2016, https://clinicaltrials.gov/ct2/show/NCT02878278.


Subject(s)
Lymphoma, T-Cell, Peripheral , Neoplasms , Humans , Biomarkers , Cell Line, Tumor , Chromatin , Chromatin Assembly and Disassembly , DNA Methylation , Janus Kinases/therapeutic use , Lymphoma, T-Cell, Peripheral/drug therapy , Lymphoma, T-Cell, Peripheral/genetics , Signal Transduction , STAT Transcription Factors/therapeutic use
12.
J Clin Invest ; 132(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36201246

ABSTRACT

Prevalent copy number alteration is the most prominent genetic characteristic associated with ovarian cancer (OV) development, but its role in immune evasion has not been fully elucidated. In this study, we identified RAD21, a key component of the cohesin complex, as a frequently amplified oncogene that could modulate immune response in OV. Through interrogating the RAD21-regulated transcriptional program, we found that RAD21 directly interacts with YAP/TEAD4 transcriptional corepressors and recruits the NuRD complex to suppress interferon (IFN) signaling. In multiple clinical cohorts, RAD21 overexpression is inversely correlated with IFN signature gene expression in OV. We further demonstrated in murine syngeneic tumor models that RAD21 ablation potentiated anti-PD-1 efficacy with increased intratumoral CD8+ T cell effector activity. Our study identifies a RAD21-YAP/TEAD4-NuRD corepressor complex in immune modulation, and thus provides a potential target and biomarker for precision immunotherapy in OV.


Subject(s)
Cell Cycle Proteins , Ovarian Neoplasms , Mice , Animals , Female , Humans , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Phosphoproteins/metabolism , DNA-Binding Proteins/genetics , Immune Evasion , Transcription Factors/genetics , Ovarian Neoplasms/genetics , Interferons/genetics , Muscle Proteins
13.
NPJ Breast Cancer ; 8(1): 44, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35365682

ABSTRACT

Malignant phyllodes tumors (PT) are rare aggressive fibroepithelial neoplasms with high metastatic potential and lack effective therapy. We established a patient-derived xenograft (PDX) and cell line model (designated MPT-S1) of malignant PT which demonstrated clinical response to pazopanib. Whole exome sequencing identified somatic mutations in TP53, RB1, MED12, and KMT2D. Immunohistochemistry and genomic profiles of the tumor, PDX and cell line were concordant. In keeping with clinical observation, pazopanib reduced cell viability in a dose-dependent manner and evoked apoptosis, and led to significant abrogation of in vivo tumor growth. Whole transcriptomic analysis revealed that pazopanib decreased expression of genes involved in oncogenic and apoptosis signaling. We also observed decreased expression of ENPP1, with known roles in cancer invasion and metastasis, as well as STING pathway upregulation. Accordingly, pazopanib induced micronuclei formation, and evoked phospho-TBK1 and PD-L1 expression. In an additional cohort of malignant PT (n = 14), six (42.9%) showed comparable or higher levels of ENPP1 relative to MPT-S1, highlighting its potential role as a therapeutic target. In conclusion, we established MPT-S1, a new PDX and cell line model, and provided evidence for the clinical efficacy of pazopanib in malignant PT.

14.
Mol Genet Genomic Med ; 10(3): e1853, 2022 03.
Article in English | MEDLINE | ID: mdl-35122417

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is an inherited cystic kidney disease associated with a spectrum of various renal and extrarenal manifestations, including increased risk of kidney cancers. Here, we present the initial molecular description of sarcomatoid renal cell carcinoma (sRCC) arising in the setting of ADPKD. METHODS: Multiregion whole-exome sequencing and whole transcriptomic sequencing were used to examine intratumoral molecular heterogeneity among histologically-distinct spindle (sarcomatoid), epithelioid, or biphasic compartments within the tumor and compared with the non-malignant ADPKD component. RESULTS: Spindle and biphasic components harbored several overlapping driver gene mutations, but do not share any with the epithelioid component. Mutations in ATM, CTNNB1, and NF2 were present only in the biphasic and spindle components, while mutations in BID, FLT3, ARID1B, and SMARCA2 were present only in the epithelioid component. We observed dichotomous evolutionary pathways in the development of epithelioid and spindle compartments, involving early mutations in TP53 and ATM/CTNNB1/NF2 respectively. Wnt, PI3K-mTOR, and MAPK signaling pathways, known key mechanisms involved in ADPKD development, featured prominently in the sarcomatoid component. CONCLUSION: This highlights that common pro-oncogenic signals are present between ADPKD and sRCC providing insights into their shared pathobiology.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Carcinoma, Renal Cell/pathology , Female , Humans , Kidney Neoplasms/complications , Kidney Neoplasms/genetics , Male , Polycystic Kidney Diseases/complications , Polycystic Kidney, Autosomal Dominant/complications , Exome Sequencing
15.
Oncogene ; 40(47): 6479-6493, 2021 11.
Article in English | MEDLINE | ID: mdl-34611310

ABSTRACT

Androgen receptor (AR) plays a central role in driving prostate cancer (PCa) progression. How AR promotes this process is still not completely clear. Herein, we used single-cell transcriptome analysis to reconstruct the transcriptional network of AR in PCa. Our work shows AR directly regulates a set of signature genes in the ER-to-Golgi protein vesicle-mediated transport pathway. The expression of these genes is required for maximum androgen-dependent ER-to-Golgi trafficking, cell growth, and survival. Our analyses also reveal the signature genes are associated with PCa progression and prognosis. Moreover, we find inhibition of the ER-to-Golgi transport process with a small molecule enhanced antiandrogen-mediated tumor suppression of hormone-sensitive and insensitive PCa. Finally, we demonstrate AR collaborates with CREB3L2 in mediating ER-to-Golgi trafficking in PCa. In summary, our findings uncover a critical role for dysregulation of ER-to-Golgi trafficking expression and function in PCa progression, provide detailed mechanistic insights for how AR tightly controls this process, and highlight the prospect of targeting the ER-to-Golgi pathway as a therapeutic strategy for advanced PCa.


Subject(s)
Androgens/pharmacology , Basic-Leucine Zipper Transcription Factors/metabolism , Endoplasmic Reticulum/pathology , Gene Expression Regulation, Neoplastic/drug effects , Golgi Apparatus/pathology , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Animals , Apoptosis , Basic-Leucine Zipper Transcription Factors/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Gene Regulatory Networks , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Humans , Male , Mice , Prognosis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/genetics , Single-Cell Analysis/methods , Survival Rate , Transcriptome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
16.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34464356

ABSTRACT

Ovarian cancer is characterized by aberrant activation of the mitogen-activated protein kinase (MAPK), highlighting the importance of targeting the MAPK pathway as an attractive therapeutic strategy. However, the clinical efficacy of MEK inhibitors is limited by intrinsic or acquired drug resistance. Here, we established patient-derived ovarian cancer models resistant to MEK inhibitors and demonstrated that resistance to the clinically approved MEK inhibitor trametinib was associated with enhancer reprogramming. We also showed that enhancer decommissioning induced the downregulation of negative regulators of the MAPK pathway, leading to constitutive ERK activation and acquired resistance to trametinib. Epigenetic compound screening uncovered that HDAC inhibitors could alter the enhancer reprogramming and upregulate the expression of MAPK negative regulators, resulting in sustained MAPK inhibition and reversal of trametinib resistance. Consequently, a combination of HDAC inhibitor and trametinib demonstrated a synergistic antitumor effect in vitro and in vivo, including patient-derived xenograft mouse models. These findings demonstrated that enhancer reprogramming of the MAPK regulatory pathway might serve as a potential mechanism underlying MAPK inhibitor resistance and concurrent targeting of epigenetic pathways and MAPK signaling might provide an effective treatment strategy for advanced ovarian cancer.


Subject(s)
Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Ovarian Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Animals , Cell Line, Tumor , Disease Models, Animal , Drug Resistance, Neoplasm , Enhancer Elements, Genetic , Female , Histone Deacetylase Inhibitors/pharmacology , Humans , MAP Kinase Signaling System/physiology , Mice , Pyridones/pharmacology , Pyrimidinones/pharmacology
17.
Mod Pathol ; 34(7): 1320-1332, 2021 07.
Article in English | MEDLINE | ID: mdl-33727697

ABSTRACT

Breast fibroepithelial lesions are biphasic tumors which comprise the common benign fibroadenomas (FAs) and the rarer phyllodes tumors (PTs). This study analyzed 262 (42%) conventional FAs, 45 (7%) cellular FAs, and 321 (51%) benign PTs contributed by the International Fibroepithelial Consortium, using a previously curated 16 gene panel. Benign PTs were found to possess a higher number of mutations, and higher rates of cancer driver gene alterations than both groups of FAs, in particular MED12, TERT promoter, RARA, FLNA, SETD2, RB1, and EGFR. Cases with MED12 mutations were also more likely to have TERT promoter, RARA, SETD2, and EGFR. There were no significant differences detected between conventional FAs and cellular FAs, except for PIK3CA and MAP3K1. TERT promoter alterations were most optimal in discriminating between FAs and benign PTs. Our study affirms the role of sequencing and key mutations that may assist in refining diagnoses of these lesions.


Subject(s)
Breast Neoplasms/genetics , Fibroadenoma/genetics , Phyllodes Tumor/genetics , Adult , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , DNA Mutational Analysis , Diagnosis, Differential , Female , Fibroadenoma/diagnosis , Fibroadenoma/pathology , High-Throughput Nucleotide Sequencing , Humans , Mutation , Phyllodes Tumor/diagnosis , Phyllodes Tumor/pathology
18.
Cancer Res ; 81(5): 1413-1425, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33402387

ABSTRACT

Novel strategies to treat late-stage nasopharyngeal carcinoma that often develop resistance to chemotherapy remains an unmet clinical demand. In this study, we identify the multi-kinase inhibitor pacritinib as capable of resensitizing the response to paclitaxel in an acquired resistance model. Transcriptome analysis of paclitaxel-sensitive and -resistant cell lines, as well as chemorefractory clinical samples, identified S100A9 as the top candidate gene suppressed by pacritinib and whose overexpression was significantly associated with paclitaxel resistance and poor clinical outcome. Moreover, both paclitaxel-resistant nasopharyngeal carcinoma cells and relapsed/metastatic clinical samples exhibited increased IRAK1 phosphorylation and demonstrated that pacritinib could abolish the IRAK1 phosphorylation to suppress S100A9 expression. Functional studies in both in vitro and in vivo models showed that genetic or pharmacologic blockade of IRAK1 overcame the resistance to paclitaxel, and combined treatment of pacritinib with paclitaxel exhibited superior antitumor effect. Together, these findings demonstrate an important role for the IRAK1-S100A9 axis in mediating resistance to paclitaxel. Furthermore, targeting of IRAK1 by pacritinib may provide a novel therapeutic strategy to overcome chemoresistance in nasopharyngeal carcinoma. SIGNIFICANCE: Deregulation of the IRAK1-S100A9 axis correlates with poor prognosis, contributes to chemoresistance in nasopharyngeal carcinoma, and can be targeted by pacritinib to overcome chemoresistance in nasopharyngeal carcinoma.


Subject(s)
Calgranulin B/metabolism , Drug Resistance, Neoplasm/drug effects , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy , Paclitaxel/pharmacology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Bridged-Ring Compounds/pharmacology , Calgranulin B/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/physiology , Drug Screening Assays, Antitumor , Female , Humans , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice, Inbred BALB C , Molecular Targeted Therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/mortality , Prognosis , Pyrimidines/pharmacology , Xenograft Model Antitumor Assays
19.
J Clin Invest ; 130(11): 5833-5846, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33016928

ABSTRACT

Angiosarcomas are rare, clinically aggressive tumors with limited treatment options and a dismal prognosis. We analyzed angiosarcomas from 68 patients, integrating information from multiomic sequencing, NanoString immuno-oncology profiling, and multiplex immunohistochemistry and immunofluorescence for tumor-infiltrating immune cells. Through whole-genome sequencing (n = 18), 50% of the cutaneous head and neck angiosarcomas exhibited higher tumor mutation burden (TMB) and UV mutational signatures; others were mutationally quiet and non-UV driven. NanoString profiling revealed 3 distinct patient clusters represented by lack (clusters 1 and 2) or enrichment (cluster 3) of immune-related signaling and immune cells. Neutrophils (CD15+), macrophages (CD68+), cytotoxic T cells (CD8+), Tregs (FOXP3+), and PD-L1+ cells were enriched in cluster 3 relative to clusters 2 and 1. Likewise, tumor inflammation signature (TIS) scores were highest in cluster 3 (7.54 vs. 6.71 vs. 5.75, respectively; P < 0.0001). Head and neck angiosarcomas were predominant in clusters 1 and 3, providing the rationale for checkpoint immunotherapy, especially in the latter subgroup with both high TMB and TIS scores. Cluster 2 was enriched for secondary angiosarcomas and exhibited higher expression of DNMT1, BRD3/4, MYC, HRAS, and PDGFRB, in keeping with the upregulation of epigenetic and oncogenic signaling pathways amenable to targeted therapies. Molecular and immunological dissection of angiosarcomas may provide insights into opportunities for precision medicine.


Subject(s)
Hemangiosarcoma , Neoplasm Proteins , Cell Line, Tumor , Female , Hemangiosarcoma/classification , Hemangiosarcoma/genetics , Hemangiosarcoma/immunology , Humans , Inflammation/classification , Inflammation/genetics , Inflammation/immunology , Male , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology
20.
Mod Pathol ; 33(9): 1732-1745, 2020 09.
Article in English | MEDLINE | ID: mdl-32322022

ABSTRACT

Breast fibroepithelial lesions (FELs) encompass the common fibroadenoma (FA) and relatively rare phyllodes tumour (PT); the latter entity is usually classified as benign, borderline or malignant. Intratumoural heterogeneity is frequently present in these tumours, making accurate histologic evaluation challenging. Despite their rarity, PTs are an important clinical problem due to their propensity for recurrence and, in the case of malignant PT, metastasis. Surgical excision is the mainstay of management. Recent work has uncovered myriad genetic alterations in breast FELs. In this study, exome sequencing was performed on seven cases of morphologically heterogeneous breast FELs, including FAs, PTs of all grades, and a case of metaplastic spindle cell carcinoma arising in PT, in order to elucidate their intratumoural genetic repertoire. Gene mutations identified encompassed cell signalling, tumour suppressor, DNA repair and cell cycle regulating pathways. Mutations common to multiple tumour regions generally showed higher variant allele frequency. Frequent mutations included MED12, TP53, RARA and PIK3CA. Histological observations of increased cellular density and pleomorphism correlated with mutational burden. Phylogenetic analyses revealed disparate pathways of possible tumour progression. In summary, histological heterogeneity correlated with genetic changes in breast FELs.


Subject(s)
Breast Neoplasms/pathology , Fibroadenoma/pathology , Genetic Heterogeneity , Mutation , Phyllodes Tumor/pathology , Adult , Aged , Breast Neoplasms/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Female , Fibroadenoma/genetics , Humans , Mediator Complex/genetics , Middle Aged , Phyllodes Tumor/genetics , Retinoic Acid Receptor alpha/genetics , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...