Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
World J Clin Cases ; 12(18): 3340-3350, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983440

ABSTRACT

BACKGROUND: Enhanced magnetic resonance imaging (MRI) is widely used in the diagnosis, treatment and prognosis of hepatocellular carcinoma (HCC), but it can not effectively reflect the heterogeneity within the tumor and evaluate the effect after treatment. Preoperative imaging analysis of voxel changes can effectively reflect the internal heterogeneity of the tumor and evaluate the progression-free survival (PFS). AIM: To predict the PFS of patients with HCC before operation by building a model with enhanced MRI images. METHODS: Delineate the regions of interest (ROI) in arterial phase, portal venous phase and delayed phase of enhanced MRI. After extracting the combinatorial features of ROI, the features are fused to obtain deep learning radiomics (DLR)_Sig. DeLong's test was used to evaluate the diagnostic performance of different typological features. K-M analysis was applied to assess PFS in different risk groups, and the discriminative ability of the model was evaluated using the C-index. RESULTS: Tumor diameter and diolame were independent factors influencing the prognosis of PFS. Delong's test revealed multi-phase combined radiomic features had significantly greater area under the curve values than did those of the individual phases (P < 0.05).In deep transfer learning (DTL) and DLR, significant differences were observed between the multi-phase and individual phases feature sets (P < 0.05). K-M survival analysis revealed a median survival time of high risk group and low risk group was 12.8 and 14.2 months, respectively, and the predicted probabilities of 6 months, 1 year and 2 years were 92%, 60%, 40% and 98%, 90%,73%, respectively. The C-index was 0.764, indicating relatively good consistency between the predicted and observed results. DTL and DLR have higher predictive value for 2-year PFS in nomogram. CONCLUSION: Based on the multi-temporal characteristics of enhanced MRI and the constructed Nomograph, it provides a new strategy for predicting the PFS of transarterial chemoembolization treatment of HCC.

2.
Kaohsiung J Med Sci ; 39(6): 596-604, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36912285

ABSTRACT

Tanshinone IIA (Tan IIA) has an important role in treatment of cardiovascular diseases, including atherosclerosis. The vascular smooth muscle cells (VSMCs) are a major part of the atherosclerotic plaque. However, the biological functions of Tan IIA in regulating VSMCs function remain mostly unclear. This research aimed at identifying the explicit molecular mechanism that Tan IIA regulates oxidized low-density lipoprotein (ox-LDL)-mediated VSMC proliferation and migration. VSMCs challenged by ox-LDL were adopted as cellular model of atherosclerosis, and suffered from Tan IIA treatment. After that, cells proliferation, apoptosis or migration were measured. The expression levels of microRNA (miR)-137, transient receptor potential cation channel subfamily C member 3 (TRPC3) and proliferating cell nuclear antigen (PCNA) were measured. The targeting relationship between miR-137 and TRPC3 was determined. It was found that Tan IIA blunted VSMC proliferation, PCNA expression and migration mediated by ox-LDL. Tan IIA promoted miR-137 level, and miR-137 knockdown reversed the influences of Tan IIA on VSMC proliferation, PCNA expression and migration in the presence of ox-LDL. TRPC3 was verified to be targeted by miR-137. Moreover, TRPC3 silencing exacerbated the influences of Tan IIA on VSMC proliferation, apoptosis and migration, and it mitigated the inhibitive effects of miR-137 knockdown on function of Tan IIA. We confirmed for the first time that Tan IIA constrained ox-LDL-stimulated VSMC proliferation and migration via regulating the miR-137/TRPC3 axis, which provided a theoretical basis for the research and promotion of Tan IIA as a therapeutic drug.


Subject(s)
Atherosclerosis , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/pharmacology , RNA, Long Noncoding/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , Cell Proliferation/genetics , Apoptosis , Myocytes, Smooth Muscle/metabolism , Cell Movement , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...