Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 1): 126639, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37657570

ABSTRACT

Solid dispersions (SDs) possess the potential to enhance the bioavailability of insoluble active pharmaceutical ingredients (APIs) by effectively converting them into amorphous state. However, SDs have a tendency to recrystallize unless appropriate excipients are employed. The objective of this study was to evaluate the ability of hypromellose acetate succinate HF (HPMCAS-HF) and Soluplus® to inhibit the recrystallization of ß-carotene and improve its in vivo bioavailability through the fabrication of ternary ß-carotene solid dispersions (SDs) with the aid of specific surfactant. Due to rapid micellization, the dissolution profiles of ß-carotene SDs based on HPMCAS-HF/Span 20 (5:5, w/w) or Soluplus®/Span 20 (6:4, w/w) combinations exhibited significant improvement, which were almost 7-10 times higher than ß-carotene bulk powder. DSC and PXRD analysis indicated a notable reduction in the crystallinity degree of ß-carotene within the SDs. The stability study demonstrated a half-life of ß-carotene in the SDs exceeding 30 days. Additionally, the in vivo pharmacokinetics analysis confirmed that the cellulose derivatives/surfactant combinations significantly enhanced the bioavailability of ß-carotene by 1.37-fold and 2.3-fold, respectively. Notably, the HPMCAS-HF/Span 20 combination exhibited superior performance. Consequently, the HPMCAS-HF/Span 20 combination held potential for the advancement of an effective drug delivery system for ß-carotene.


Subject(s)
Surface-Active Agents , beta Carotene , Spectroscopy, Fourier Transform Infrared , Solubility
2.
Colloids Surf B Biointerfaces ; 225: 113267, 2023 May.
Article in English | MEDLINE | ID: mdl-36940502

ABSTRACT

Herein, cyclosporine A loaded liposomes (CsA-Lips) were fabricated aimed at improving the biocompatibility of the ophthalmic formulation and getting rid of the direct contact of ocular tissues with irritant excipients. Response surface methodology was exploited in order to investigate the influence of miscellaneous factors on the key characteristics of CsA-Lips. Ratio of EPC:CsA, ratio of EPC:Chol, and stirring speed were selected as the independent variables, while size, drug-loading content (DL), and drug-loading content (DL) loss rate were applied as the response variables. In case of the maximal lack-of-fit p-value and minimum sequential p-value, quadratic model was regarded as the fittest model to analyze the data. The correlation of independent variables with response variables was described by three-dimension surface figures. Optimized formulation for CsA-Lips was obtained with ratio of EPC:CsA set as 15, ratio of EPC:Chol set as 2, and stirring speed set as 800 rpm. The particle size of CsA-Lips was 129.2 nm after optimalization while their TEM images exhibited spherical unilamellar vesicles with clearly shell-core structure. CsA released more rapidly from CsA-Lips in comparison with self-made emulsion and Restasis®. Besides, minimum cytotoxicity of CsA-Lips was perceived via both MTT method and LDH method, indicating the excellent compatibility of the ophthalmic formulation. Simultaneously, CsA-Lips showed enhanced nonspecific internalization in the cytoplasm with a time-dose-dependent manner. In conclusion, CsA-Lips could be adhibited as the hopeful ophthalmic drug delivery system clinically for dry eye syndrome (DES).


Subject(s)
Cyclosporine , Liposomes , Cyclosporine/pharmacology , Cyclosporine/chemistry , Emulsions/chemistry , Eye , Drug Delivery Systems , Ophthalmic Solutions/pharmacology , Ophthalmic Solutions/chemistry , Immunosuppressive Agents/chemistry
3.
Colloids Surf B Biointerfaces ; 216: 112574, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35623257

ABSTRACT

Herein, novel laser-responsive multi-functional nanoparticles (NPs-Lip@PTX/CyA/Ce6) were fabricated with bovine serum albumins (BSA) based nanoparticles, which simultaneously carried chemotherapeutic drug paclitaxel (PTX) and P-gp inhibitor cyclosporin A (CyA), as core and photosensitizer agent Chlorin e6 (Ce6) loaded Tf-modified liposomal bilayer as shell. NPs-Lip@PTX/CyA/Ce6 exhibited apparent core-shell structure morphology with particle size of 160.9 ± 1.7 nm and zeta potential of - 26.7 ± 0.6 mV, indicating their excellent stability in aqueous solution. Besides, NPs-Lip@PTX/CyA/Ce6 possessed laser-responsive release profiles upon laser irradiation at specific wavelength, which was favor to exert efficient combinatorial chemo-photodynamic therapy and effectively reverse the multiple drug resistance (MDR). Under laser irradiation, as expected, NPs-Lip@PTX/CyA/Ce6 demonstrated superb intracellular ROS productivity and fantastic in vitro and in vivo anti-cancer therapy effect but absent of systemic toxicity. In conclusion, the nano-drug delivery system would be prospectively applied in clinic as resultful therapeutic tactic for investing compositional chemo-photodynamic therapy synergistically.


Subject(s)
Breast Neoplasms , Chlorophyllides , Nanoparticles , Photochemotherapy , Porphyrins , Breast Neoplasms/drug therapy , Cell Line, Tumor , Chlorophyllides/therapeutic use , Female , Humans , Lasers , Paclitaxel , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Porphyrins/pharmacology
4.
Eur J Pharm Sci ; 168: 106036, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34637896

ABSTRACT

In this study, the amorphous solid dispersions of cyclosporine A (CsA-ASDs) were prepared by hot melt extrusion (HME) with PVP K12 as carrier to improve the oral bioavailability of CsA. The polymers were screened by solubilization and recrystallization inhibition experiments, then the CsA-ASDs were prepared with optimized technological parameters and characterized on thermodynamics and morphology. The results showed that CsA was dispersed among PVP K12 as amorphous form in CsA-ASDs, and the infrared spectrum testified that there was possible hydrogen bond interaction between CsA and PVP K12. The in vivo pharmacokinetics of CsA formulations in rats were analyzed via LC-MS. The AUC of CsA-ASD tablets increased by 7.3 times compared to CsA bulk powder and 3.1 times in contrast to CsA-PM tablets, respectively. The experiment proved that CsA-ASD tablets significantly improved the dissolution and absorption of the drug. This study had a reference value for the bioavailability improvement of oral CsA preparations.


Subject(s)
Cyclosporine , Hot Melt Extrusion Technology , Animals , Biological Availability , Chemistry, Pharmaceutical , Drug Carriers , Drug Compounding , Hot Temperature , Rats , Solubility
5.
Carbohydr Polym ; 273: 118562, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34560973

ABSTRACT

Amorphous solid dispersions (ASDs) are regarded as one of the most promising techniques for poorly-soluble active pharmaceutical ingredients (API). However, the thermodynamic instability of ASDs at supersaturated state makes them easy to recrystallize in aqueous media. In this study, ritonavir (RTV) was selected as a model drug for evaluating the solubility enhancement and recrystallization inhibition effect of various cellulose derivatives and the combinations of them with typical surfactants. Combination of HPMCAS-HF/SLS was filtrated for preparing ternary RTV solid dispersions (RTV SD) via solvent evaporation method. RTV SD exhibited enhanced dissolution manner, while the oral bioavailability of RTV SD was equivalent with the Reference Standard Norvir® but increased significantly compared to the ternary physical mixture. Thus, the ternary SD system might be promisingly employed as efficient drug delivery system for RTV, while the HPMCAS-HF/SLS combination could be recommended as effective excipient for fabricating steady solid dispersions loading poorly soluble API.


Subject(s)
Cellulose/analogs & derivatives , Excipients/chemistry , HIV Protease Inhibitors/chemistry , Ritonavir/chemistry , Animals , Crystallization , Drug Stability , HIV Protease Inhibitors/pharmacokinetics , Male , Rats, Sprague-Dawley , Ritonavir/pharmacokinetics , Solubility , Surface-Active Agents/chemistry
6.
Drug Deliv ; 27(1): 1656-1666, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33233958

ABSTRACT

Combinatorial chemo-photodynamic therapy is regared as effective cancer therapy strategy, which could be realized via multiple nano-drug delivery system. Herein, novel high payload nanoparticles stabilized by amphiphilic block polymer cholesterol-b-poly(ethylene glycol) (PEG)2000 (Chol-PEG2000) were fabricated for loading chemotherapeutic drug 10-hydroxycamptothecin (HCPT) and photosensitizer chlorin e6 (Ce6). The obtained HCPT/Ce6 NPs showed uniform rod-like morphology with a hydration diameter of 178.9 ± 4.0 nm and excellent stability in aqueous solution. HCPT and Ce6 in the NPs displayed differential release profile, which was benefit for preferentially exerting the photodynamic effect and subsequently enhancing the sensitivity of the cells to HCPT. Under laser irradiation, the NPs demonstrated fantastic in vitro and in vivo anticancer efficiency due to combinational chemo-photodynamic therapy, enhanced cellular uptake effectiveness, and superb intracellular ROS productivity. Besides, the NPs were proved as absent of systemic toxicity. In summary, this nanoparticle delivery system could be hopefully utilized as effective cancer therapy strategy for synergistically exerting combined chemo-photodynamic therapy in clinic.


Subject(s)
Drug Delivery Systems , Nanoparticles/chemistry , Photochemotherapy/methods , Polymers/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Camptothecin/administration & dosage , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Cell Line, Tumor , Chlorophyllides , Cholesterol , Drug Carriers , Drug Liberation , Female , Lasers , Mice , Mice, Inbred BALB C , Particle Size , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/therapeutic use , Polyethylene Glycols/chemistry , Porphyrins/administration & dosage , Porphyrins/therapeutic use , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...