Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Electron. j. biotechnol ; 31: 75-83, Jan. 2018. tab, ilus, graf
Article in English | LILACS | ID: biblio-1022130

ABSTRACT

Background: Phalaenopsis is an important ornamental flowering plant that belongs to the Orchidaceae family and is cultivated worldwide. Phalaenopsis has a long juvenile phase; therefore, it is important to understand the genetic elements regulating the transition from vegetative phase to reproductive phase. In this study, FLOWERING LOCUS T (FT) homologs in Phalaenopsis were cloned, and their effects on flowering were analyzed. Results: A total of five FT-like genes were identified in Phalaenopsis. Phylogenetic and expression analyses of these five FT-like genes indicated that some of these genes might participate in the regulation of flowering. A novel FT-like gene, PhFT-1, distantly related to previously reported FT genes in Arabidopsis and other dicot crops, was also found to be a positive regulator of flowering as heterologous expression of PhFT-1 in Arabidopsis causes an early flowering phenotype. Conclusions: Five FT homologous genes from Phalaenopsis orchid were identified, and PhFT-1 positively regulates flowering.


Subject(s)
Plant Proteins/genetics , Arabidopsis , Orchidaceae/genetics , Flowers/genetics , Polymerase Chain Reaction/methods , Cloning, Molecular , Genes, Plant/genetics , Computational Biology , Orchidaceae/growth & development , Flowers/growth & development
2.
Springerplus ; 5(1): 1458, 2016.
Article in English | MEDLINE | ID: mdl-27833829

ABSTRACT

Cymbidium faberi is a traditional orchid flower in China that is highly appreciated for its fragrant aroma from its zygomorphic flowers. One bottleneck of the commercial production of C. faberi is the long vegetative growth phase of the orchid and the difficulty of the regulation of its flowering time. Moreover, its flower size, shape and color are often targeting traits for orchid breeders. Understanding the molecular mechanisms of floral development in C. faberi will ultimately benefit the genetic improvement of this orchid plant. The goal of this study is to identify potential genes and regulatory networks related to the floral development in C. faberi by using transcriptome sequencing, de novo assembly and computational analyses. The vegetative and flower buds of C. faberi were sampled for such comparisons. The RNA-seq yielded about 189,300 contigs that were assembled into 172,959 unigenes. Furthermore, a total of 13,484 differentially expressed unigenes (DEGs) were identified between the vegetative and flower buds. There were 7683 down-regulated and 5801 up-regulated DEGs in the flower buds compared to those in the vegetative buds, among which 3430 and 6556 DEGs were specifically enriched in the flower or vegetative buds, respectively. A total of 173 DEGs orthologous to known genes associated with the floral organ development, floral symmetry and flowering time were identified, including 12 TCP transcription factors, 34 MADS-box genes and 28 flowering time related genes. Furthermore, expression levels of ten genes potentially involved in floral development and flowering time were verified by quantitative real-time PCR. The identified DEGs will facilitate the functional genetic studies for further understanding the flower development of C. faberi.

SELECTION OF CITATIONS
SEARCH DETAIL
...