Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 54(13): 8061-8071, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32511902

ABSTRACT

Growing evidence has suggested that microbial biofilms are potential environmental "hotspots" for the production and accumulation of a bioaccumulative neurotoxin, methylmercury. Here, we demonstrate that extracellular polymeric substances (EPS), the main components of biofilm matrices, significantly interfere with mercury sulfide precipitation and lead to the formation of nanoparticulate metacinnabar available for microbial methylation, a natural process predominantly responsible for the environmental occurrence of methylmercury. EPS derived from mercury methylating bacteria, particularly Desulfovibrio desulfuricans ND132, substantially increase the methylation potential of nanoparticulate mercury. This is likely due to the abundant aromatic biomolecules in EPS that strongly interact with mercury sulfide via inner-sphere complexation and consequently enhance the short-range structural disorder while mitigating the aggregation of nanoparticulate mercury. The EPS-elevated bioavailability of nanoparticulate mercury to D. desulfuricans ND132 is not induced by dissolution of these nanoparticles in aqueous phase, and may be dictated by cell-nanoparticle interfacial reactions. Our discovery is the first step of mechanistically understanding methylmercury production in biofilms. These new mechanistic insights will help incorporate microbial EPS and particulate-phase mercury into mercury methylation models, and may facilitate the assessment of biogeochemical cycling of other nutrient or toxic elements driven by EPS-producing microorganisms that are prevalent in nature.


Subject(s)
Mercury , Methylmercury Compounds , Nanoparticles , Extracellular Polymeric Substance Matrix , Methylation , Sulfides
2.
Sci Total Environ ; 714: 136827, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32018974

ABSTRACT

Methylmercury (MeHg) is a neurotoxin, mainly derived from microbial mercury methylation in natural aquatic environments, and poses threats to human health. Polar regions and paddy soils are potential hotspots of mercury methylation and represent environmental settings that are susceptible to natural and anthropogenic perturbations. The effects of changing environmental conditions on the methylating microorganisms and mercury speciation due to global climate change and farming practices aimed for sustainable agriculture were discussed for polar regions and paddy soils, respectively. To better understand and predict microbial mercury methylation in the changing environment, we synthesized current understanding of how to effectively identify active mercury methylators and assess the bioavailability of different mercury species for methylation. The application of biomarkers based on the hgcAB genes have demonstrated the occurrence of potential mercury methylators, such as sulfate-reducing bacteria, iron-reducing bacteria, methanogen and syntrophs, in a diverse variety of microbial habitats. Advanced techniques, such as enriched stable isotope tracers, whole-cell biosensor and diffusive gradient thin film (DGT) have shown great promises in quantitatively assessing mercury availability to microbial methylators. Improved understanding of the complex structure of microbial communities consisting mercury methylators and non-methylators, chemical speciation of inorganic mercury under geochemically relevant conditions, and the pathway of cellular mercury uptake will undoubtedly facilitate accurate assessment and prediction of in situ microbial mercury methylation.


Subject(s)
Biological Availability , Bacteria , Mercury , Methylation , Methylmercury Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...