Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 15(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37432305

ABSTRACT

Gut microbiota and its metabolites are related to the female reproductive system. Animal experiments have demonstrated the relationship between gut microbiota-derived short chain fatty acids (SCFAs) and embryo quality. However, few studies have linked SCFAs to clinical pregnancy outcomes in humans. This retrospective cross-sectional study recruited 147 patients undergoing in vitro fertilization or intracytoplasmic sperm injection and embryo transfer (IVF/ICSI-ET) (70 with no pregnancies and 77 with clinical pregnancies). The association between SCFAs levels and clinical pregnancy outcomes was evaluated using univariate and multivariate logistic regression analyses. The association between SCFAs and metabolic parameters was analyzed using a linear regression model. Receiver operating characteristic (ROC) curve analysis was used for assessing the efficiency of SCFAs to evaluate the clinical pregnancy outcomes. Fecal propionate levels were significantly higher in the no pregnancy group than in the clinical pregnancy group (p < 0.01). Fecal acetate and butyrate levels were not significantly different between females with and without clinical pregnancies (p > 0.05). There were positive relationships between fecal propionate levels and fasting serum insulin (FSI) (r = 0.245, p = 0.003), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) (r = 0.276, p = 0.001), and triglycerides (TG) (r = 0.254, p = 0.002). Multivariate analyses determined that fecal propionate (OR, 1.103; 95% CI, 1.045-1.164; p < 0.001) was an independent risk factor for no pregnancies. The area under the ROC curve (AUC) of fecal propionate was 0.702 (p < 0.001), with a sensitivity of 57.1% and a specificity of 79.2%. High fecal propionate concentration has a negative association on clinical pregnancy outcomes and is positively correlated with FSI, TG, and HOMA-IR.


Subject(s)
Gastrointestinal Microbiome , Insulin Resistance , Male , Animals , Pregnancy , Humans , Female , Pregnancy Outcome , Retrospective Studies , Sperm Injections, Intracytoplasmic , Propionates , Cross-Sectional Studies , Semen , Fatty Acids, Volatile , Fertilization in Vitro
2.
Front Cell Infect Microbiol ; 13: 1059339, 2023.
Article in English | MEDLINE | ID: mdl-37305412

ABSTRACT

Objective: This study assessed the impact of the cervical microbiome on reproductive outcomes in frozen embryo transfer (FET) patients. Study design: This cross-sectional study included 120 women (aged 20-40 years) undergoing FET. A cervical sample obtained before embryo transfer was analyzed using 16S full-length assembly sequencing technology (16S-FAST), which detects full length 16S rDNA. Results: We found that >48% of the identified Lactobacillus species were novel. The cervical microbiome was clustered into three cervical microbiome types (CMT): CMT1, dominated by L. crispatus; CMT2, dominated by L. iners; and CMT3, dominated by other bacteria. CMT1 had a significantly higher biochemical pregnancy rate (P=0.008) and clinical pregnancy rate (P=0.006) than CMT2 and CMT3. Logistic analysis showed that compared to CMT1, CMT2 and CMT3 were independent risk factors for biochemical pregnancy failure (odds ratio [OR]: 6.315, 95% confidence interval [CI]: 2.047-19.476, P=0.001; OR: 3.635, 95% CI: 1.084-12.189, P=0.037) and clinical pregnancy failure (OR: 4.883, 95% CI: 1.847-12.908, P=0.001; OR: 3.478, 95% CI: 1.221-9.911, P=0.020). A L. crispatus-dominated group as a diagnostic indicator of biochemical and clinical pregnancy positive had area under the curve (AUC) values of 0.651(P=0.008) and 0.645(P=0.007), respectively. Combining the cervical microbiome with embryonic stage optimized the diagnostic performance for biochemical and clinical pregnancy failure with AUC values of 0.743(P<0.001) and 0.702(P<0.001), respectively. Additionally, relative abundance of L. crispatus predicted biochemical pregnancy positive with AUC values of 0.679(P=0.002) and clinical pregnancy positive with AUC values of 0.659(P=0.003). Conclusion: Cervical microbiome profiling using 16S-FAST enables stratification of the chance of becoming pregnant prior to FET. Knowledge of the cervical microbiota may enable couples to make more balanced decisions regarding the timing and continuation of FET treatment cycles.


Subject(s)
Lactobacillus , Microbiota , Pregnancy , Humans , Female , Cross-Sectional Studies , Lactobacillus/genetics , Technology , Fertilization in Vitro
3.
J Clin Med ; 12(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36769605

ABSTRACT

This study aimed to assess the effects of GH adjuvant therapy on the cumulative live birth rate in patients with poor embryo quality and to determine the characteristics of patients who are more responsive to GH. A retrospective cohort study was carried out in patients who have suffered from previous IVF failure due to poor embryonic development and underwent IVF with or without a 6-week pretreatment with GH in the subsequent cycle from January 2018 to December 2020. Clinical parameters including the cumulative live birth rate between the (-) GH and (+) GH groups were compared. Multivariate analysis was performed to ascertain associations between clinical parameters and cumulative live birth rate. Upon analysis of the clinical data from 236 IVF cycles, 84 patients received GH and 152 did not receive GH. In frozen embryo transfer cycles, compared with the (-) GH group, the implantation rate and live birth rate were significantly higher in the (+) GH group (p < 0.05). After adjusting for possible confounding factors, GH improved cumulative live birth per oocyte retrieval cycle by 1.96 folds (p = 0.032). Furthermore, when patients were subdivided based on age and BMI, a significant increase in the cumulative live birth rate was found in the (+) GH group of patients between 35 and 42 years old and BMI ≥ 24 kg/m2, respectively (p < 0.05). GH may increase the live birth rate in women who experienced IVF failure because of poor embryonic development, particularly in obese patients and women with advanced age.

4.
Nutrients ; 14(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35956371

ABSTRACT

Infertility is defined as failure to achieve pregnancy within 12 months of unprotected intercourse in women. Trace elements, a kind of micronutrient that is very important to female reproductive function, are affected by intestinal absorption, which is regulated by gut microbiota. Enterotype is the classification of an intestinal microbiome based on its characteristics. Whether or not Prevotella-enterotype and Bacteroides-enterotype are associated with blood trace elements among infertile women remains unclear. The study aimed to explore the relationship between five main whole blood trace elements and these two enterotypes in women with infertility. This retrospective cross-sectional study recruited 651 Chinese women. Whole blood copper, zinc, calcium, magnesium, and iron levels were measured. Quantitative real-time PCR was performed on all fecal samples. Patients were categorized according to whole blood trace elements (low levels group, <5th percentile; normal levels group, 5th‒95th percentile; high levels group, >95th percentile). There were no significant differences in trace elements between the two enterotypes within the control population, while in infertile participants, copper (P = 0.033), zinc (P < 0.001), magnesium (P < 0.001), and iron (P < 0.001) in Prevotella-enterotype was significantly lower than in Bacteroides-enterotype. The Chi-square test showed that only the iron group had a significant difference in the two enterotypes (P = 0.001). Among infertile patients, Prevotella-enterotype (Log(P/B) > −0.27) predicted the low levels of whole blood iron in the obesity population (AUC = 0.894; P = 0.042). For the high levels of iron, Bacteroides-enterotype (Log(P/B) <−2.76) had a predictive power in the lean/normal group (AUC = 0.648; P = 0.041) and Log(P/B) <−3.99 in the overweight group (AUC = 0.863; P = 0.013). We can infer that these two enterotypes may have an effect on the iron metabolism in patients with infertility, highlighting the importance of further research into the interaction between enterotypes and trace elements in reproductive function.


Subject(s)
Gastrointestinal Microbiome , Infertility, Female , Trace Elements , Bacteroides , Copper , Cross-Sectional Studies , Female , Humans , Iron , Magnesium , Prevotella , Retrospective Studies , Zinc
5.
Commun Biol ; 4(1): 525, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953326

ABSTRACT

Iron is the fundamental element for numerous physiological functions. Plasmalemmal divalent metal ion transporter 1 (DMT1) is responsible for cellular uptake of ferrous (Fe2+), whereas transferrin receptors (TFR) carry transferrin (TF)-bound ferric (Fe3+). In this study we performed detailed analysis of the action of Fe ions on cytoplasmic free calcium ion concentration ([Ca2+]i) in astrocytes. Administration of Fe2+ or Fe3+ in µM concentrations evoked [Ca2+]i in astrocytes in vitro and in vivo. Iron ions trigger increase in [Ca2+]i through two distinct molecular cascades. Uptake of Fe2+ by DMT1 inhibits astroglial Na+-K+-ATPase, which leads to elevation in cytoplasmic Na+ concentration, thus reversing Na+/Ca2+ exchanger and thereby generating Ca2+ influx. Uptake of Fe3+ by TF-TFR stimulates phospholipase C to produce inositol 1,4,5-trisphosphate (InsP3), thus triggering InsP3 receptor-mediated Ca2+ release from endoplasmic reticulum. In summary, these findings reveal the mechanisms of iron-induced astrocytic signalling operational in conditions of iron overload.


Subject(s)
Astrocytes/metabolism , Calcium Signaling/drug effects , Calcium/metabolism , Cation Transport Proteins/metabolism , Ferric Compounds/pharmacology , Ferrous Compounds/pharmacology , Receptors, Transferrin/metabolism , Animals , Astrocytes/cytology , Astrocytes/drug effects , Biological Transport , Mice , Mice, Inbred C57BL , Sodium/metabolism
6.
Histol Histopathol ; 28(6): 725-35, 2013 06.
Article in English | MEDLINE | ID: mdl-23359427

ABSTRACT

Our goal was to elucidate the dynamic expression and distribution of the nuclear factor erythroid-derived factor 2-related factor 1 (Nrf1) by immunohistochemistry, Western blotting, and real-time PCR during wound healing of contused skeletal muscle in rats. An animal model of skeletal muscle contusion was established in 40 Sprague-Dawley male healthy rats. Samples were taken at 6 h, 12 h, 1 day, 3 days, 5 days, 7 days, 10 days, and 14 days post-injury, respectively (5 rats in each posttraumatic interval). 5 rats were employed as control. A weak immunoreactivity of Nrf1 was observed in the sarcoplasm and nuclei of normal myofibers in control rats. Prominent immunostaining for Nrf1 was seen in a large number of polymorphonuclear cells, round-shaped mononuclear cells and spindle-shaped fibroblastic cells, and regenerated multinucleated myotubes in the injured tissue. Subsequently, neutrophils, macrophages and myofibroblasts were identified as expressing Nrf1 by double immunofluorescent procedures. By real-time PCR analysis, Nrf1 expression was up-regulated and peaked at inflammatory phase. The expression tendency was also confirmed by Western blot. In conclusion, Nrf1 is time-dependently expressed in certain cell types, such as neutrophils, macrophages, myofibroblasts and regenerated multinucleated myotubes, suggesting that Nrf1 may modulate oxidative stress response and regeneration after trauma to skeletal muscles.


Subject(s)
Macrophages/pathology , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Myofibroblasts/pathology , NF-E2-Related Factor 1/biosynthesis , Neutrophils/pathology , Animals , Disease Models, Animal , Macrophages/metabolism , Male , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Myofibroblasts/metabolism , NF-E2-Related Factor 1/genetics , Neutrophils/metabolism , Oxidative Stress , Rats , Rats, Sprague-Dawley , Regeneration , Time Factors , Up-Regulation , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...