Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 259: 116380, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38754193

ABSTRACT

Exosomes, as novel biomarker for liquid biopsy, exhibit huge important potential value for cancer diagnosis. However, various proteins show different expression levels on exosomal membrane, and the absolute concentration of exosomes in clinical samples is easily influenced by a number of factors. Here, we developed a CRISPR/Cas12a and aptamer-chemiluminescence based analysis (CACBA) for the relative abundance determination of tumor-related protein positive exosomes in plasma for breast cancer diagnosis. The total concentration of exosomes was determined through captured CD63 using a CRISPR/Cas12a-based method with the LoD of 8.97 × 103 particles/µl. Meanwhile, EpCAM and MUC1 positive exosomes were quantitatively detected by aptamer-chemiluminescence (ACL) based method with the LoD of 1.45 × 102 and 3.73 × 102 particles/µl, respectively. It showed that the percentages of EpCAM and MUC1 positive exosomes offered an excellent capability to differentiate breast cancer patients and healthy donors. The high sensitivity, strong specificity, outstanding anti-interference capability, and steady recovery rate of this approach offered higher accuracy and robustness than the commercialized method in clinical trial. In addition with good stability, easy preparation and low cost, this method not only provides a new approach to rapid analysis of exosome proteins, it may be quickly extended to the diagnoses of various cancers.


Subject(s)
Aptamers, Nucleotide , Biomarkers, Tumor , Biosensing Techniques , Breast Neoplasms , CRISPR-Cas Systems , Epithelial Cell Adhesion Molecule , Exosomes , Mucin-1 , Humans , Breast Neoplasms/diagnosis , Breast Neoplasms/blood , Breast Neoplasms/genetics , Exosomes/chemistry , Exosomes/genetics , Female , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Mucin-1/blood , Mucin-1/genetics , Mucin-1/analysis , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Epithelial Cell Adhesion Molecule/genetics , Luminescent Measurements/methods , Tetraspanin 30 , Limit of Detection
2.
Biosensors (Basel) ; 14(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667191

ABSTRACT

Exosomes constitute an emerging biomarker for cancer diagnosis because they carry multiple proteins that reflect the origins of the parent cell. The highly sensitive detection of exosomes is a crucial prerequisite for the diagnosis of cancer. In this study, we report an exosome detection system based on quantum weak value amplification (WVA). The WVA detection system consists of a reflection detection light path and a Zr-ionized biochip. Zr-ionized biochips effectively capture exosomes through the specific interaction between zirconium dioxide and the phosphate groups on the lipid bilayer of exosomes. Aptamer-modified gold nanoparticles (Au NPs) are then used to specifically recognize proteins on exosomes to enhance the detection signal. The sensitivity and resolution of the detection system are 2944.07 nm/RIU and 1.22 × 10-5 RIU, respectively. The concentration of exosomes can be directly quantified by the WVA system, ranging from 105-107 particles/mL with the detection limit of 3 × 104 particles/mL. The use of Au NPs-EpCAM for the specific enhancement of breast cancer MDA-MB-231 exosomes is demonstrated. The results indicate that the WVA detection system can be a promising candidate for the detection of exosomes as tumor markers.


Subject(s)
Biosensing Techniques , Breast Neoplasms , Exosomes , Gold , Metal Nanoparticles , Humans , Breast Neoplasms/diagnosis , Female , Gold/chemistry , Metal Nanoparticles/chemistry , Biomarkers, Tumor , Cell Line, Tumor , Limit of Detection , Zirconium/chemistry
3.
Drug Des Devel Ther ; 17: 3493-3505, 2023.
Article in English | MEDLINE | ID: mdl-38034481

ABSTRACT

Purpose: This study examined the underlying mechanisms of SJD's anti-inflammatory and analgesic effects on acute GA flares. Methods: This study used pharmacology network and molecular docking methods. The active ingredients of ShuiJingDan (SJD) were obtained from the Traditional Chinese Medicine Systems Pharmacology Analysis Platform (TCMSP), and the relevant targets of GA were obtained from the Online Mendelian Inheritance in Man (OMIM) database and Therapeutic Target Database (TTD). The core drug group-target-disease Venn diagram was formed by crossing the active ingredients of SJD and the relevant targets. Gene Ontology (GO) analysis was conducted for functional annotation, DAVID was used for Kyoto Encyclopedia of Genes, and Genomes pathway enrichment analysis, and R was used to find the core targets. The accuracy of SJD network pharmacology analysis in GA treatment was verified by molecular docking simulations. Finally, a rat GA model was used to further verify the anti-inflammatory mechanism of SJD in the treatment of GA. Results: SJD mainly acted on target genes including IL1B, PTGS2, CXCL8, EGF, and JUN, as well as signal pathways including NF-κB, Toll-like receptor (TLR), IL-17, and MAPK. The rat experiments showed that SJD could significantly relieve ankle swelling, reduce the local skin temperature, and increased the paw withdrawal threshold. SJD could also reduce synovial inflammation, reduced the concentrations of interleukin-1ß (IL-1ß), IL-8, and COX-2 in the synovial fluid, and suppressed the expression of IL1B, CXCL8, and PTGS2 mRNA in the synovial tissue. Conclusion: SJD has a good anti-inflammatory effect to treat GA attacks, by acting on target genes such as IL-1ß, PTGS2, and CXCL8.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Humans , Animals , Rats , Molecular Docking Simulation , Cyclooxygenase 2 , Symptom Flare Up , Databases, Genetic , Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional
4.
Front Endocrinol (Lausanne) ; 14: 1156637, 2023.
Article in English | MEDLINE | ID: mdl-37476496

ABSTRACT

Introduction: This study was designed to investigate the effect of running exercise on improving bone health in aging mice and explore the role of the SIRT1 in regulating autophagy and osteogenic differentiation of Bone marrow Mesenchymal Stem Cells (BMSCs). Methods: Twelve-month-old male C57BL/6J mice were used in this study as the aging model and were assigned to treadmill running exercise for eight weeks. Non-exercise male C57BL/6J mice of the same old were used as aging control and five-month-old mice were used as young controls. BMSCs were isolated from mice and subjected to mechanical stretching stimulation in vitro. Results: The results showed that aging mice had lower bone mass, bone mineral density (BMD), and autophagy than young mice, while running exercise improved BMD and bone mass as well as upregulated autophagy in bone cells. Mechanical loading increased osteogenic differentiation and autophagy in BMSCs, and knockdown of SIRT1 in BMSCs demonstrated that SIRT1-regulated autophagy involved the mechanical loading activation of osteogenic differentiation. Conclusion: Taken together, this study revealed that exercise improved bone health during aging by activating bone formation, which can be attributed to osteogenic differentiation of BMSCs through the activation of SIRT1-mediated autophagy. The mechanisms underlying this effect may involve mechanical loading.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Male , Mice , Aging , Autophagy , Bone Density , Cell Differentiation , Mice, Inbred C57BL , Sirtuin 1/genetics
5.
Adv Healthc Mater ; 9(1): e1901187, 2020 01.
Article in English | MEDLINE | ID: mdl-31800164

ABSTRACT

Highly efficient and stimulus-responsive nanomedicines for cancer treatment are currently receiving tremendous attention. In this study, an acid-triggered charge-reversible graphene-based all-in-one nanocomplex is appropriately designed by surface modification with multilayer polymers and simultaneous co-transportation of photosensitizer indocyanine green (ICG) and oligonucleotide inhibitor of miR-21 (miR-21i) to achieve highly efficient genetic phototherapy in a controlled manner. The nanocomplex (denoted as GPCP/miR-21i/ICG) effectively protects miR-21i from degradation and exhibits excellent photothermal/photochemical reactive oxygen species (ROS) generation as well as fluorescence imaging ability. The cargoes ICG and miR-21i can significantly be released at acidic pH compared with normal physiological medium and escaped from endosomes/lysosomes due to the acid-triggered charge reversal effect. Typically, the released miR-21i downregulate the endogenous miR-21 and result in the upregulation of the target proteins PTEN and Bax, thus increasing the phototherapeutic efficiency of ICG. High in vivo anticancer efficiency against the MDA-MB-231 triple-negative breast cancer (TNBC) model is obtained due to the combination of genetic regulation of miR-21i and the photokilling effect of ICG. This work highlights the great potential of this smart nanocomplex as an attractive modality of gene-photo combined treatment of cancer, especially for intractable TNBC.


Subject(s)
Graphite/chemistry , Nanoparticles/chemistry , Phototherapy/methods , Triple Negative Breast Neoplasms/therapy , Animals , Antagomirs/chemistry , Antagomirs/metabolism , Antagomirs/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Hydrogen-Ion Concentration , Indocyanine Green/chemistry , Indocyanine Green/metabolism , Indocyanine Green/therapeutic use , Lasers , Lysosomes/metabolism , Mice, Nude , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , MicroRNAs/metabolism , Photosensitizing Agents/chemistry , Photosensitizing Agents/metabolism , Photosensitizing Agents/therapeutic use , Polymers/chemistry , Reactive Oxygen Species/metabolism , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays
6.
Biomaterials ; 205: 106-119, 2019 06.
Article in English | MEDLINE | ID: mdl-30913486

ABSTRACT

Currently, photoimmunotherapy based on a theranostic nanoplatform emerges as a promising modality in advanced cancer therapy. In this study, a new type of versatile nanoassemblies (denoted as PC@GCpD(Gd)) was rationally designed by integrating the polydopamine stabilized graphene quantum dots (GQD)-photosensitizer nanocomposites (denoted as GCpD), immunostimulatory polycationic polymer/CpG oligodeoxynucleotide (CpG ODN) nanoparticles (denoted as PC) and Gd3+/Cy3 imaging probes for dual magnetic resonance/fluorescence imaging-guided photoimmunotherapy. PC@GCpD(Gd) effectively killed the tumor cells through the amplified photothermal and photodynamic effects mediated by GCpD, and contemporaneously delivered CpG ODN to the targeted endosomal Toll-like receptor 9 (TLR9) to continuously stimulate the secretion of proinflammatory cytokines and the maturation of dendritic cells, thereby resulting in the activation and infiltration of T lymphocytes. As a result, PC@GCpD(Gd) achieved robust inhibition efficiency to almost completely suppress the EMT6 murine mammary cancer model under laser irradiation, implying the superior synergy of combined photoimmunotherapy. Moreover, the in vivo delivery and biodistribution of PC@GCpD(Gd) could be tracked using the high-quality bimodal magnetic resonance imaging/fluorescence imaging. This study highlighted the potent prospect of hybrid PC@GCpD(Gd) nanoassemblies for precise cancer photoimmunotherapy with a cascading effect.


Subject(s)
Graphite/chemistry , Immunotherapy , Nanotechnology , Neoplasms/therapy , Oligodeoxyribonucleotides/chemistry , Photosensitizing Agents/therapeutic use , Quantum Dots/chemistry , Theranostic Nanomedicine , Animals , Cell Line, Tumor , Endocytosis , Female , Magnetic Resonance Imaging , Mice , Mice, Inbred BALB C , NIH 3T3 Cells , Neoplasms/diagnostic imaging , Neoplasms/immunology , Neoplasms/pathology , RAW 264.7 Cells , Tissue Distribution
7.
ACS Appl Mater Interfaces ; 10(8): 6942-6955, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29400948

ABSTRACT

Nanomedicine-based combination therapy has sparked a growing interest in clinical disease treatment and pharmaceutical industry. In this study, a mitochondria-targeted and near-infrared (NIR) light-activable multitasking nanographene (i.e., GT/IR820/DP-CpG) was engineered to in situ trigger highly efficient "triple-punch" strategy of cancer photodynamic therapy, photothermal therapy, and immunotherapy. Modification of triphenylphosphonium on graphene made the vehicle specifically guide the NIR dye IR820 home to mitochondria, followed by lysosomes escape in a time-dependent manner. The photoactive nanocomplex generated an abundant reactive oxygen species as well as photothermal heat to ultimately kill cancer cells by inducing mitochondrial collapse and irreversible cell apoptosis upon the NIR laser irradiation. Further introduction of an immunostimulatory conjugate DP-CpG significantly promoted the secretion of proinflammatory cytokines (i.e., interleukin-6, tumor necrosis factor-α, and interferon-γ) and thus improved the immunogenicity of tumors. In vivo studies demonstrated that GT/IR820/DP-CpG remarkably inhibited tumor growth (tumor inhibition rate, ∼88%) resulting from the combinational phototherapeutic effect of IR820 and immunostimulatory activity of DP-CpG, thereby causing negligible toxic effects on mice. Our work provides a new paradigm of architecting organelle-targeted and stimulative nanocomplex for highly efficient cancer photoimmunotherapy.


Subject(s)
Mitochondria , Animals , Combined Modality Therapy , Mice , Photochemotherapy , Photosensitizing Agents , Phototherapy
8.
Macromol Rapid Commun ; 38(21)2017 Nov.
Article in English | MEDLINE | ID: mdl-28910504

ABSTRACT

Biocompatible fluorescent polymeric nanoparticles (FPNs) are promising luminescent probes in cellular bioimaging, while the fabrication of high-quantum-yield FPN using nonconjugated heterochain polymers derived from step-growth polymerization is still in its infancy. Herein, the nonconjugated polyarylene ether nitrile (PEN) is endowed with aggregation-induced emission (AIE) feature by incorporation of an AIEgen named of 1,2-di(4-hydroxyphenyl)-1,2-diphenylethene into macromolecular backbone. Furthermore, the AIE-active PEN is crosslinked into water soluble fluorescent nanospheres showing good biocompatibility and strong emission ≈480 nm with a quantum yield of 21% in the presence of Ca2+ , which allows the successful bioimaging of cancer cells. Due to the facile fabrication of FPNs and their effective bioimaging performance, the current work will open the way for the biomedical applications of various high performance polyarylene ethers.


Subject(s)
Calcium/chemistry , Cross-Linking Reagents/chemistry , Ether/chemistry , Molecular Imaging/methods , Nanoparticles/chemistry , Nitriles/chemistry , Polymers/chemistry , Animals , Cell Death , Cell Line , Humans , Nanoparticles/ultrastructure , Nanospheres/chemistry , Polymers/chemical synthesis , Spectrometry, Fluorescence
9.
Acta Biomater ; 53: 631-642, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28161572

ABSTRACT

Light-triggered nanotheranostics opens a fascinating but challenging avenue to achieve simultaneous and highly efficient anticancer outcomes for multimodal therapeutic and diagnostic modalities. Herein, a multifunctional phototheranostics based on a photosensitizer-assembled graphene/gold nanostar hybrid (GO/AuNS-PEG) was developed for cancer synergistic photodynamic (PDT) and photothermal therapy (PTT) as well as effective photothermal imaging. The stable and biocompatible GO/AuNS-PEG composite displayed a high photothermal conversion efficiency due to the enhanced optical absorbance of both graphene and gold nanostars in the near-infrared (NIR) range. By tuning the absorption wavelength of GO/AuNS-PEG to that of Chlorin e6 (Ce6), GO/AuNS-PEG/Ce6 completely eliminated the EMT6 xenograft tumors by the tremendous synergistic anticancer efficiency of simultaneous PDT and PTT under a single NIR laser irradiation (660nm) in vivo. The underlying mechanism may be the enhanced cytoplasmic uptake and accumulation of GO/AuNS-PEG/Ce6 and the subsequent photodestruction of the lysosomal membrane and mitochondria. Moreover, GO/AuNS-PEG/Ce6 exhibited negligible side-effects on the body and other organs. These results demonstrate that the graphene/gold nanostar nanoconstruct provides a versatile and reliable integrated platform for the photo-controlled cancer theragnostic applications. STATEMENT OF SIGNIFICANCE: This work demonstrated the application of graphene-Au Nanostars hybridized system (denoted as GO/AuNS-PEG) in single wavelength laser induced synergistic photodynamic (PDT) and photothermal therapy (PTT) and effective cancer photothermal/fluorescence multimode imaging. GO/AuNS-PEG showed excellent biocompatibility and high dual-enhanced photothermal efficiency under the near-infrared laser irradiation that was very promise for deep tumor imaging. By combining with the photosensitizer Chlorin e6, both in vitro and in vivo data confirmed the efficient photoablation of the EMT6 tumors through the synergistic PDT and PTT effect under the activation of a single wavelength laser.


Subject(s)
Gold/therapeutic use , Metal Nanoparticles/therapeutic use , Microscopy, Fluorescence/methods , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Animals , Cell Line, Tumor , Cell Survival/radiation effects , Color , Female , Graphite/chemistry , Mice , Mice, Inbred BALB C , Theranostic Nanomedicine/methods , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...