Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 11(1): 20, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31907371

ABSTRACT

Loss of CD20 is a major obstacle for the retreatment of relapsed/refractory diffuse large B cell lymphoma (DLBCL) with Rituximab-associated regimens. Histone deacetylation causes gene silencing and inhibits CD20 expression. Chidamide is a novel inhibitor for histone deacetylases (HDACs). We hypothesize that Chidamide could overcome Rituximab-mediated down-regulation of CD20 and facilitate Rituximab-induced killing. In this study, we determine the mechanism of synergy of Chidamide with Rituximab in DLBCL using in vitro and in vivo models. We found that the levels of CD20 protein surface expression on five DLBCL cell lines were significantly and positively correlated with the sensitivities of cells to Rituximab. Treatment with Rituximab significantly reduced CD20 surface expression at the protein levels. RNA sequencing showed that Chidamide significantly increased expression of more than 2000 transcriptomes in DLBCL cells, around 1000 transcriptomes belong to the cell membrane and cell periphery pathways, including MS4A1. Chidamide significantly increased CD20 surface expression in DLBCL cell lines. Combination with Chidamide significantly synergized Rituximab-induced cell death in vitro and significantly inhibited tumour growth in DLBCL-bearing xenograft mice. A patient with relapsed/refractory DLBCL achieved a complete response after three cycles combined treatment with Chidamide and Rituximab. In conclusion, our data demonstrate for the first time that inhibition of HDACs by Chidamide significantly enhanced Rituximab-induced tumour growth inhibition in vitro and in vivo. We propose that CD20 surface expression should be used clinically to evaluate treatment response in patients with DLBCL. Chidamide is a promising sensitizer for the retreatment of DLBCL with Rituximab.


Subject(s)
Aminopyridines/pharmacology , Antigens, CD20/metabolism , Benzamides/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Lymphoma, Large B-Cell, Diffuse/pathology , Rituximab/pharmacology , Up-Regulation , Animals , Antigens, CD20/genetics , Apoptosis/drug effects , Cell Line, Tumor , Cell Lineage/drug effects , Cell Proliferation/drug effects , Down-Regulation/drug effects , Down-Regulation/genetics , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Gene Ontology , Hematopoiesis/drug effects , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Transcriptome/genetics , Treatment Outcome , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
2.
Cell Death Dis ; 10(5): 330, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988279

ABSTRACT

High mobility group box 1 (HMGB1) protein in the tumor microenvironment actively contributes to tumor progression but its role in diffuse large B-cell lymphoma (DLBCL) is unknown. The aim of this study was to determine the mechanism by which HMGB1 promotes tumor growth in DLBCL and whether blockade of HMGB1 signaling pathway could inhibit tumorigenesis. We report that HMGB1 promotes proliferation of DLBCL cells by activation of AKT, extracellular signal-regulated kinases 1/2 (ERK1/2), signal transducer and activator of transcription 3 (STAT3) and SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase (Src). Ethyl pyruvate (EP), an anti-inflammatory agent, inhibits HMGB1 active release from DLBCL cells and significantly inhibited proliferation of DLBCL cells in vitro. Treatment with EP significantly prevented and inhibited tumor growth in vivo and prolonged DLBCL-bearing mice survival. EP significantly downregulated HMGB1 expression and phosphorylation of Src and ERK1/2 in mice lymphoma tissue. EP induced accumulation of the cell cycle inhibitor p27 but downregulated expression of cyclin-dependent kinase 2 (CDK2). Increased nuclear translocation of p27 interacted with CDK2 and cyclin A, which led to blockade of cell cycle progression at the G1 to S phase transition. In conclusion, we demonstrated for the first time that blockade of HMGB1-mediated signaling pathway by EP effectively inhibited DLBCL tumorigenesis and disease progression.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cell Proliferation/drug effects , HMGB1 Protein/metabolism , Pyruvates/pharmacology , Signal Transduction/drug effects , Animals , Anti-Inflammatory Agents/therapeutic use , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation/drug effects , Proto-Oncogene Mas , Proto-Oncogene Proteins c-akt/metabolism , Pyruvates/therapeutic use , STAT3 Transcription Factor/metabolism , src-Family Kinases/metabolism
3.
J Neurooncol ; 141(1): 71-81, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30446901

ABSTRACT

BACKGROUND: The prognosis in patients with gliomas after surgical resection followed by radiotherapy and/or chemotherapy is still very poor. The pro-apoptotic protein Bax, a short-lived protein in cancers, plays important roles in the sensitivity of glioma cells to spontaneous and therapy-induced apoptosis but and its prognostic value in gliomas is unknown. METHODS: By an immunohistochemical method, we determined Bax protein expression from 96 patients with gliomas after curative resection. Two statistical analyses were performed to evaluate the prognostic significance of Bax protein: an independent continuous and a multivariate categorical analysis, with test/validation set-defined cut points, and Kaplan-Meier estimated outcome measures of overall survival (OS) and relapse-free survival (RFS). RESULTS: Bax protein levels in glioblastoma were significantly decreased compared with grade II gliomas. Lower levels of Bax expression confer worse OS (continuous P = 0.025; categorical P = 0.003) and RFS (continuous P = 0.014; categorical P < 0.0001) and negatively correlate with the grades of gliomas. Patients underwent radiotherapy followed by surgical resection showed significantly increased OS (median = 45 vs. 17 months) and RFS (median = 39 vs. 16 months). Patients with higher levels of Bax and radiotherapy showed greatly increased survival rates (median OS = 66 months and median RFS = 105 months). Lower expression of Bax also confers inferior clinical outcome for gliomas patients after chemotherapy with temozolomide (OS and RFS P < 0.0001). CONCLUSION: Decreased expression of Bax correlates with poor clinical outcome in patients with gliomas. We propose that Bax protein levels can be used as a reliable prognostic marker for risk-stratify patients with gliomas after curative resection and radiotherapy and/or chemotherapy.


Subject(s)
Brain Neoplasms , Glioma , bcl-2-Associated X Protein/metabolism , Biomarkers, Tumor/metabolism , Brain Neoplasms/diagnosis , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Combined Modality Therapy , Female , Glioblastoma/diagnosis , Glioblastoma/metabolism , Glioblastoma/therapy , Glioma/diagnosis , Glioma/metabolism , Glioma/therapy , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Treatment Outcome
4.
Am J Cancer Res ; 7(9): 1913-1925, 2017.
Article in English | MEDLINE | ID: mdl-28979813

ABSTRACT

Poor prognosis of gastric cancer is related to not only malignancy of gastric cancer cells, but also the tumor microenvironment. Thus drugs, which can inhibit both of them, are urgently needed to be explored. Studies on effect of Proton-pump inhibitors (PPIs) in anti-neoplasms are increasing, but is rare in gastric in gastric cancer. Here we investigated how the gastric cancer microenvironment is regulated by PPIs. The objective response rate of gastric cancer patients in our hospital treated by PPIs is investigated. PPIs' effects were further explored by observing the change of microRNAs, cytokines, cellular apoptosis. Bioinformatic pathway analysis of microarray was used to discover the pathway involved in PPIs' regulation of gastric cancer microenvironments. Immunoblotting assays and qRT-PCR were used to define molecular events with PPIs treatment. We report here that PPIs can improve the prognosis of advanced gastric cancer patients; and inhibit the progress of gastric cancer both in vivo and in vitro. Moreover, high dose of PPIs can regulate the pathway associated with tumor malignancy and microenvironment via inhibiting the release of exosomes, which packed microRNAs. PPIs can inhibit the transformation of CAFs (cancer associated fibroblasts) and cytokines released from CAFs. In addition, PPIs inhibit the malignancy of gastric cancer through regulating HIF-1α-FOXO1 axis. High dose of PPIs can inhibit malignancy of gastric cancer and regulate its surrounding tumor microenvironment. This finding suggests that PPIs maybe of potential value as a therapeutic tool for treatment of gastric cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...