Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(13): 3371-3374, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37390133

ABSTRACT

Micro-spectrometers have great potential in various fields such as medicine, agriculture, and aerospace. In this work, a quantum-dot (QD) light-chip micro-spectrometer is proposed in which QDs emit different wavelengths of light that are combined with a spectral reconstruction (SR) algorithm. The QD array itself can play the roles of both the light source and the wavelength division structure. The spectra of samples can be obtained by using this simple light source with a detector and algorithm, and the spectral resolution reaches 9.7 nm in the wavelength range from 580 nm to 720 nm. The area of the QD light chip is 4 × 7.5 mm2, which is 20 times smaller than the halogen light sources of commercial spectrometers. It does not need a wavelength division structure and greatly reduces the volume of the spectrometer. Such a micro-spectrometer can be used for material identification: in a demonstration, three kinds of transparent samples, real and fake leaves, and real and fake blood were classified with an accuracy of 100%. These results indicate that the spectrometer based on a QD light chip has broad application prospects.


Subject(s)
Algorithms , Plant Leaves
2.
Opt Lett ; 47(7): 1610-1613, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363690

ABSTRACT

Silicon-based integrated optoelectronics has become a hotspot in the field of computers and information processing systems. An integrated coherent light source on-chip with a small footprint and high efficiency is one of the most important unresolved devices. Here, we realize a silicon-based vertical cavity surface-emitting laser in the near-infrared communication band by making efforts in both controlled preparation of high-gain erbium silicate materials and novel design of high optical feedback microcavity. Single-crystal erbium/ytterbium silicate microplates with erbium concentration as high as 5 × 1021 cm-3 are controlled prepared by a chemical vapor deposition method. They can produce strong luminescence with quite a long lifetime (2.3 ms) at the wavelength of 1.5 µm. By embedding the erbium silicate microplates between two dielectric Bragg reflectors, we construct a vertical cavity surface-emitting laser at 1.5 µm, with a lasing threshold as low as 20 µJ/cm2 and Q factor of nearly 2000. Our study provides a new pathway to achieve a sub-micrometer coherent light source for optical communication.

SELECTION OF CITATIONS
SEARCH DETAIL
...