Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Nat Commun ; 15(1): 3796, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714706

ABSTRACT

The metabolic implications in Alzheimer's disease (AD) remain poorly understood. Here, we conducted a metabolomics study on a moderately aging Chinese Han cohort (n = 1397; mean age 66 years). Conjugated bile acids, branch-chain amino acids (BCAAs), and glutamate-related features exhibited strong correlations with cognitive impairment, clinical stage, and brain amyloid-ß deposition (n = 421). These features demonstrated synergistic performances across clinical stages and subpopulations and enhanced the differentiation of AD stages beyond demographics and Apolipoprotein E ε4 allele (APOE-ε4). We validated their performances in eight data sets (total n = 7685) obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study and Memory and Aging Project (ROSMAP). Importantly, identified features are linked to blood ammonia homeostasis. We further confirmed the elevated ammonia level through AD development (n = 1060). Our findings highlight AD as a metabolic disease and emphasize the metabolite-mediated ammonia disturbance in AD and its potential as a signature and therapeutic target for AD.


Subject(s)
Alzheimer Disease , Ammonia , Metabolomics , Phenotype , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Ammonia/metabolism , Aged , Female , Male , Middle Aged , Brain/metabolism , Brain/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Bile Acids and Salts/metabolism , Aged, 80 and over , Cohort Studies
2.
Clin Nutr ; 43(7): 1647-1656, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38810424

ABSTRACT

BACKGROUND & AIMS: It has been revealed good nutritional status and no physical frailty, which are modifiable lifestyle factors, are linked to less cognitive decline and a lower risk of Alzheimer's disease (AD). We aimed to investigate the associations between nutritional status and physical frailty and plasma AD biomarkers, especially the Tau-associated biomarkers in older cognitively unimpaired (CU) adults with higher ß-amyloid (Aß) burden. METHODS: The nutritional status and physical frailty were assessed via Mini-Nutritional Assessment Short-Form (MNA-SF) and Fried frailty index. The participants underwent the examination of plasma AD biomarkers and 18F-florbetapir PET scan as well as 18F-MK6240 PET in the validation cohort. Correlation and multiple linear regression analyses were used to investigate the associations between nutritional status and frailty and AD biomarkers. RESULTS: Two cohorts were included in our study. A total of 129 participants with Aß-PET positive were enrolled in the development cohort. Multiple linear regression analysis showed MNA-SF scores, normal nutritional status, Fried frailty index scores, frailty and some domains of frailty including weight loss, maximal grip strength and exhaustion were associated with plasma p-Tau-181. Furthermore, weight loss, Fried frailty index scores and frailty were associated with higher Aß-PET standard uptake value ratio. We further performed subgroup analyses stratified by age, sex and apolipoprotein E ε4 genotype to investigate the beneficial characteristics of nutrition and frailty in the special subgroups. Validation cohort contained 38 Aß-PET positive participants. MNA-SF scores, normal nutritional status, Fried frailty index scores and frailty were associated with Tau burden evaluated by 18F-MK6240 PET Braak-like stages. CONCLUSIONS: Our data indicates that normal nutritional status and no physical frailty may be associated with expected trend of plasma AD biomarkers, especially less Tau pathology in older CU adults with Aß deposition. Adjusting to these characteristics of nutrition and physical frailty may help reduce the risk of AD development.

3.
ACS Chem Neurosci ; 15(11): 2112-2120, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38776461

ABSTRACT

Neuroinflammation plays an important role in Alzheimer's disease and primary tauopathies. The aim of the current study was to map [18F]GSK1482160 for imaging of purinergic P2X7R in Alzheimer's disease and primary tauopathy mouse models. Small animal PET was performed using [18F]GSK1482160 in widely used mouse models of Alzheimer's disease (APP/PS1, 5×FAD, and 3×Tg), 4-repeat tauopathy (rTg4510) mice, and age-matched wild-type mice. Increased uptake of [18F]GSK1482160 was observed in the brains of 7-month-old rTg4510 mice compared to wild-type mice and compared to 3-month-old rTg4510 mice. A positive correlation between hippocampal tau [18F]APN-1607 and [18F]GSK1482160 uptake was found in rTg4510 mice. No significant differences in the uptake of [18F]GSK1482160 was observed for APP/PS1 mice, 5×FAD mice, or 3×Tg mice. Immunofluorescence staining further indicated the distribution of P2X7Rs in the brains of 7-month-old rTg4510 mice with accumulation of tau inclusion. These findings provide in vivo imaging evidence for an increased level of P2X7R in the brains of tauopathy mice.


Subject(s)
Disease Models, Animal , Mice, Transgenic , Positron-Emission Tomography , Receptors, Purinergic P2X7 , Tauopathies , Animals , Tauopathies/diagnostic imaging , Tauopathies/metabolism , Receptors, Purinergic P2X7/metabolism , Positron-Emission Tomography/methods , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Fluorine Radioisotopes , Brain/metabolism , Brain/diagnostic imaging , tau Proteins/metabolism
4.
Article in English | MEDLINE | ID: mdl-38587645

ABSTRACT

PURPOSE: Toludesvenlafaxine is a recently developed antidepressant that belongs to the triple reuptake inhibitor class. Despite the in vitro evidence that toludesvenlafaxine inhibits the reuptake of serotonin (5-HT), norepinephrine (NE) and dopamine (DA), there is no in vivo evidence that toludesvenlafaxine binds to DAT and increases DA level, a mechanism thought to contribute to its favorable clinical performance. METHODS: Positron emission tomography/computed tomography (PET/CT) was used to examine the DAT binding capacity in healthy rats and human subjects and microdialysis was used to examine the striatal DA level in rats. [18F]FECNT and [11C]CFT were used as PET/CT radioactive tracer for rat and human studies, respectively. RESULTS: In rats, 9 mg/kg of toludesvenlafaxine hydrochloride (i.v.) followed by an infusion of 3 mg/kg via minipump led to the binding rate to striatum DAT at 3.7 - 32.41% and to hypothalamus DAT at 5.91 - 17.52% during the 45 min scanning period. 32 mg/kg oral administration with toludesvenlafaxine hydrochloride significantly increased the striatal DA level with the AUC0 - 180 min increased by 63.9%. In healthy volunteers, 160 mg daily toludesvenlafaxine hydrochloride sustained-release tablets for 4 days led to an average occupancy rates of DAT at 8.04% ± 7.75% and 8.09% ± 7.00%, respectively, in basal ganglion 6 h and 10 h postdose. CONCLUSION: These results represent the first to confirm the binding of toludesvenlafaxine to DAT in both rats and humans using PET/CT, and its elevation of brain DA level, which may help understand the unique pharmacological and functional effects of triple reuptake inhibitors such as toludesvenlafaxine. GOV IDENTIFIERS: NCT05905120. Registered 14 June 2023. (retrospectively registered).

5.
Alzheimers Dement ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634334

ABSTRACT

INTRODUCTION: Metabotropic glutamate receptor 5 (mGluR5) is involved in regulating integrative brain function and synaptic transmission. Aberrant mGluR5 signaling and relevant synaptic failure play a key role in the pathophysiological mechanism of Alzheimer's disease (AD). METHODS: Ten cognitively impaired (CI) individuals and 10 healthy controls (HCs) underwent [18F]SynVesT-1 and [18F]PSS232 positron emission tomography (PET)/magnetic resonance to assess synaptic density and mGluR5 availability. The associations between mGluR5 availability and synaptic density were examined. A mediation analysis was performed to investigate the possible mediating effects of mGluR5 availability and synaptic loss on the relationship between amyloid deposition and cognition. RESULTS: CI patients exhibited lower mGluR5 availability and synaptic density in the medial temporal lobe than HCs. Regional synaptic density was closely associated with regional mGluR5 availability. mGluR5 availability and synaptic loss partially mediated the relationship between amyloid deposition and cognition. CONCLUSIONS: Reductions in mGluR5 availability and synaptic density exhibit similar spatial patterns in AD and are closely linked. HIGHLIGHTS: Cognitively impaired patients exhibited lower mGluR5 availability and synaptic density in the medial temporal lobe than HCs. Reductions in mGluR5 availability and synaptic density exhibit similar spatial patterns in AD. Regional synaptic density was closely associated with regional mGluR5 availability. mGluR5 availability and synaptic loss partially mediated the relationship between amyloid deposition and global cognition. With further research, modulating mGluR5 availability might be a potential therapeutic strategy for improving synaptic function in AD.

6.
J Immunother Cancer ; 12(4)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580333

ABSTRACT

BACKGROUND: The programmed cell death protein-1 (PD-1)/programmed death receptor ligand 1 (PD-L1) axis critically facilitates cancer cells' immune evasion. Antibody therapeutics targeting the PD-1/PD-L1 axis have shown remarkable efficacy in various tumors. Immuno-positron emission tomography (ImmunoPET) imaging of PD-L1 expression may help reshape solid tumors' immunotherapy landscape. METHODS: By immunizing an alpaca with recombinant human PD-L1, three clones of the variable domain of the heavy chain of heavy-chain only antibody (VHH) were screened, and RW102 with high binding affinity was selected for further studies. ABDRW102, a VHH derivative, was further engineered by fusing RW102 with the albumin binder ABD035. Based on the two targeting vectors, four PD-L1-specific tracers ([68Ga]Ga-NOTA-RW102, [68Ga]Ga-NOTA-ABDRW102, [64Cu]Cu-NOTA-ABDRW102, and [89Zr]Zr-DFO-ABDRW102) with different circulation times were developed. The diagnostic efficacies were thoroughly evaluated in preclinical solid tumor models, followed by a first-in-human translational investigation of [68Ga]Ga-NOTA-RW102 in patients with non-small cell lung cancer (NSCLC). RESULTS: While RW102 has a high binding affinity to PD-L1 with an excellent KD value of 15.29 pM, ABDRW102 simultaneously binds to human PD-L1 and human serum albumin with an excellent KD value of 3.71 pM and 3.38 pM, respectively. Radiotracers derived from RW102 and ABDRW102 have different in vivo circulation times. In preclinical studies, [68Ga]Ga-NOTA-RW102 immunoPET imaging allowed same-day annotation of differential PD-L1 expression with specificity, while [64Cu]Cu-NOTA-ABDRW102 and [89Zr]Zr-DFO-ABDRW102 enabled longitudinal visualization of PD-L1. More importantly, a pilot clinical trial shows the safety and diagnostic value of [68Ga]Ga-NOTA-RW102 immunoPET imaging in patients with NSCLCs and its potential to predict immune-related adverse effects following PD-L1-targeted immunotherapies. CONCLUSIONS: We developed and validated a series of PD-L1-targeted tracers. Initial preclinical and clinical evidence indicates that immunoPET imaging with [68Ga]Ga-NOTA-RW102 holds promise in visualizing differential PD-L1 expression, selecting patients for PD-L1-targeted immunotherapies, and monitoring immune-related adverse effects in patients receiving PD-L1-targeted treatments. TRIAL REGISTRATION NUMBER: NCT06165874.


Subject(s)
B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , Heterocyclic Compounds, 1-Ring , Lung Neoplasms , Single-Domain Antibodies , Humans , B7-H1 Antigen/drug effects , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Gallium Radioisotopes , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Programmed Cell Death 1 Receptor , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/therapeutic use
7.
Alzheimers Dement ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648354

ABSTRACT

INTRODUCTION: We investigated the association between white matter hyperintensities (WMH) and regional cortical thickness, amyloid and tau deposition, and synaptic density in the WMH-connected cortex using multimodal images. METHODS: We included 107 participants (59 with Alzheimer's disease [AD]; 27 with mild cognitive impairment; 21 cognitively normal controls) with amyloid beta (Aß) positivity on amyloid positron emission tomography (PET). The cortex connected to WMH was identified using probabilistic tractography. RESULTS: We found that WMH connected to the cortex with more severe regional degeneration as measured by cortical thickness, Aß and tau deposition, and synaptic vesicle glycoprotein 2 A (SV2A) density using 18F-SynVesT-1 PET. In addition, higher ratios of Aß in the deep WMH-connected versus WMH-unconnected cortex were significantly related to lower cognitive scores. Last, the cortical thickness of WMH-connected cortex reduced more than WMH-unconnected cortex over 12 months. DISCUSSION: Our results suggest that WMH may be associated with AD-intrinsic processes of degeneration, in addition to vascular mechanisms. HIGHLIGHTS: We studied white matter hyperintensities (WMHs) and WMH-connected cortical changes. WMHs are associated with more severe regional cortical degeneration. Findings suggest WMHs may be associated with Alzheimer's disease-intrinsic processes of degeneration.

8.
Mol Psychiatry ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589563

ABSTRACT

The associations of synaptic loss with amyloid-ß (Aß) and tau pathology measured by positron emission tomography (PET) and plasma analysis in Alzheimer's disease (AD) patients are unknown. Seventy-five participants, including 26 AD patients, 19 mild cognitive impairment (MCI) patients, and 30 normal controls (NCs), underwent [18F]SynVesT-1 PET/MR scans to assess synaptic density and [18F]florbetapir and [18F]MK6240 PET/CT scans to evaluate Aß plaques and tau tangles. Among them, 19 AD patients, 12 MCI patients, and 29 NCs had plasma Aß42/40 and p-tau181 levels measured by the Simoa platform. Twenty-three individuals, 6 AD patients, 4 MCI patients, and 13 NCs, underwent [18F]SynVesT-1 PET/MRI and [18F]MK6240 PET/CT scans during a one-year follow-up assessment. The associations of Aß and tau pathology with cross-sectional and longitudinal synaptic loss were investigated using Pearson correlation analyses, generalized linear models and mediation analyses. AD patients exhibited lower synaptic density than NCs and MCI patients. In the whole cohort, global Aß deposition was associated with synaptic loss in the medial (r = -0.431, p < 0.001) and lateral (r = -0.406, p < 0.001) temporal lobes. Synaptic density in almost all regions was related to the corresponding regional tau tangles independent of global Aß deposition in the whole cohort and stratified groups. Synaptic density in the medial and lateral temporal lobes was correlated with plasma Aß42/40 (r = 0.300, p = 0.020/r = 0.289, p = 0.025) and plasma p-tau 181 (r = -0.412, p = 0.001/r = -0.529, p < 0.001) levels in the whole cohort. Mediation analyses revealed that tau tangles mediated the relationship between Aß plaques and synaptic density in the whole cohort. Baseline tau pathology was positively associated with longitudinal synaptic loss. This study suggested that tau burden is strongly linked to synaptic density independent of Aß plaques, and also can predict longitudinal synaptic loss.

9.
EMBO Mol Med ; 16(5): 1143-1161, 2024 May.
Article in English | MEDLINE | ID: mdl-38565806

ABSTRACT

Accurately predicting and selecting patients who can benefit from targeted or immunotherapy is crucial for precision therapy. Trophoblast cell surface antigen 2 (Trop2) has been extensively investigated as a pan-cancer biomarker expressed in various tumours and plays a crucial role in tumorigenesis through multiple signalling pathways. Our laboratory successfully developed two 68Ga-labelled nanobody tracers that can rapidly and specifically target Trop2. Of the two tracers, [68Ga]Ga-NOTA-T4, demonstrated excellent pharmacokinetics in preclinical mouse models and a beagle dog. Moreover, [68Ga]Ga-NOTA-T4 immuno-positron emission tomography (immunoPET) allowed noninvasive visualisation of Trop2 heterogeneous and differential expression in preclinical solid tumour models and ten patients with solid tumours. [68Ga]Ga-NOTA-T4 immunoPET could facilitate clinical decision-making through patient stratification and response monitoring during Trop2-targeted therapies.


Subject(s)
Antigens, Neoplasm , Cell Adhesion Molecules , Neoplasms , Positron-Emission Tomography , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/immunology , Humans , Animals , Cell Adhesion Molecules/metabolism , Neoplasms/diagnostic imaging , Neoplasms/immunology , Mice , Dogs , Positron-Emission Tomography/methods , Female , Single-Domain Antibodies/immunology
10.
Mol Neurobiol ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502413

ABSTRACT

Reactive astrocytes play an important role in the development of Alzheimer's disease (AD). Here, we aimed to investigate the temporospatial relationships among monoamine oxidase-B, tau and amyloid-ß (Aß), translocator protein, and glucose metabolism by using multitracer imaging in AD transgenic mouse models. Positron emission tomography (PET) imaging with [18F]SMBT-1 (monoamine oxidase-B), [18F]florbetapir (Aß), [18F]PM-PBB3 (tau), [18F]fluorodeoxyglucose (FDG), and [18F]DPA-714 (translocator protein) was carried out in 5- and 10-month-old APP/PS1, 11-month-old 3×Tg mice, and aged-matched wild-type mice. The brain regional referenced standard uptake value (SUVR) was computed with the cerebellum as the reference region. Immunofluorescence staining was performed on mouse brain tissue slices. [18F]SMBT-1 and [18F]florbetapir SUVRs were greater in the cortex and hippocampus of 10-month-old APP/PS1 mice than in those of 5-month-old APP/PS1 mice and wild-type mice. No significant difference in the regional [18F]FDG or [18F]DPA-714 SUVRs was observed in the brains of 5- or 10-month-old APP/PS1 mice or wild-type mice. No significant difference in the SUVRs of any tracer was observed between 11-month-old 3×Tg mice and age-matched wild-type mice. A positive correlation between the SUVRs of [18F]florbetapir and [18F]DPA-714 in the cortex and hippocampus was observed among the transgenic mice. Immunostaining validated the distribution of MAO-B and limited Aß and tau pathology in 11-month-old 3×Tg mice; and Aß deposits in brain tissue from 10-month-old APP/PS1 mice. In summary, these findings provide in vivo evidence that an increase in astrocyte [18F]SMBT-1 accompanies Aß accumulation in APP/PS1 models of AD amyloidosis.

11.
Alzheimers Dement ; 20(5): 3157-3166, 2024 May.
Article in English | MEDLINE | ID: mdl-38477490

ABSTRACT

INTRODUCTION: We aimed to investigate the effect of apolipoprotein E4 (APOE) ε4 on synaptic density in cognitively impaired (CI) participants. METHODS: One hundred ten CI participants underwent amyloid positron emission tomography (PET) with 18F-florbetapir and synaptic density PET with 18F-SynVesT-1. We evaluated the influence of APOE ε4 allele on synaptic density and investigated the effects of ε4 genotype on the associations of synaptic density with Alzheimer's disease (AD) biomarkers. The mediation effects of AD biomarkers on ε4-associated synaptic density loss were analyzed. RESULTS: Compared with non-carriers, APOE ε4 allele carriers exhibited significant synaptic loss in the medial temporal lobe. Amyloid beta (Aß) and tau pathology mediated the effects of APOE ε4 on synaptic density to different extents. The associations between synaptic density and tau pathology were regulated by the APOE ε4 genotype. DISCUSSION: The APOE ε4 allele was associated with decreased synaptic density in CI individuals and may be driven by AD biomarkers.


Subject(s)
Amyloid beta-Peptides , Apolipoprotein E4 , Cognitive Dysfunction , Positron-Emission Tomography , Synapses , Humans , Male , Female , Apolipoprotein E4/genetics , Aged , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Synapses/pathology , Synapses/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Genotype , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Biomarkers , Middle Aged , Alleles , Aged, 80 and over , Brain/pathology , Brain/diagnostic imaging
12.
Article in English | MEDLINE | ID: mdl-38480552

ABSTRACT

PURPOSE: The cluster of differentiation (CD70) is a potential biomarker of clear cell renal cell carcinoma (ccRCC). This study aims to develop CD70-targeted immuno-positron emission tomography/computed tomography (immunoPET/CT) imaging tracers and explore the diagnostic value in preclinical studies and the potential value in detecting metastases in ccRCC patients. METHODS: Four novel CD70-specific single-domain antibodies (sdAbs) were produced and labelled with 18F by the aluminium fluoride restrained complexing agent (AlF-RESCA) method to develop radiotracers. The visualisation properties of the tracers were evaluated in a subcutaneous ccRCC patient-derived xenograft (PDX) model. In a registered prospective clinical trial (NCT06148220), six patients with pathologically confirmed RCC were included and underwent immunoPET/CT examination exploiting one of the developed tracers (i.e., [18F]RCCB6). RESULTS: We engineered four sdAbs (His-tagged RCCB3 and RCCB6, His-tag-free RB3 and RB6) specifically targeting recombinant human CD70 without cross-reactivity to murine CD70. ImmunoPET/CT imaging with [18F]RCCB3 and [18F]RCCB6 demonstrated a high tumour-to-background ratio in a subcutaneous ccRCC PDX model, with the latter showing better diagnostic potential supported by higher tumour uptake and lower bone accumulation. In comparison, [18F]RB6, developed by sequence optimisation, has significantly lower kidney accumulation than that of [18F]RCCB6. In a pilot translational study, [18F]RCCB6 immunoPET/CT displayed ccRCC metastases in multiple patients and demonstrated improved imaging contrast and diagnostic value than 18F-FDG PET/CT in a patient with ccRCC. CONCLUSION: The work successfully developed a series of CD70-targeted immunoPET/CT imaging tracers. Of them, [18F]RCCB6 clearly and specifically identified inoculated ccRCCs in preclinical studies. Clinical translation of [18F]RCCB6 suggests potential for identifying recurrence and/or metastasis in ccRCC patients.

13.
Alzheimers Dement ; 20(4): 2516-2525, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38329281

ABSTRACT

INTRODUCTION: The objective of this study is to investigate the incremental value of amyloid positron emission tomography (Aß-PET) in a tertiary memory clinic setting in China. METHODS: A total of 1073 patients were offered Aß-PET using 18F-florbetapir. The neurologists determined a suspected etiology (Alzheimer's disease [AD] or non-AD) with a percentage estimate of their confidence and medication prescription both before and after receiving the Aß-PET results. RESULTS: After disclosure of the Aß-PET results, etiological diagnoses changed in 19.3% of patients, and diagnostic confidence increased from 69.3% to 85.6%. Amyloid PET results led to a change of treatment plan in 36.5% of patients. Compared to the late-onset group, the early-onset group had a more frequent change in diagnoses and a higher increase in diagnostic confidence. DISCUSSION: Aß-PET has significant impacts on the changes of diagnoses and management in Chinese population. Early-onset cases are more likely to benefit from Aß-PET than late-onset cases. HIGHLIGHTS: Amyloid PET contributes to diagnostic changes and its confidence in Chinese patients. Amyloid PET leads to a change of treatment plans in Chinese patients. Early-onset cases are more likely to benefit from amyloid PET than late-onset cases.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Amyloid , Alzheimer Disease/diagnostic imaging , Positron-Emission Tomography/methods , Amyloidogenic Proteins , Aniline Compounds , China , Amyloid beta-Peptides , Cognitive Dysfunction/diagnosis
14.
Brain Connect ; 14(2): 122-129, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308482

ABSTRACT

Background: Balance between brain structure and function is implicated in aging and many brain disorders. This study aimed to investigate the coupling between brain structure and function using 18F-fludeoxyglucose positron emission tomography (PET)/magnetic resonance imaging (MRI). Methods: One hundred thirty-eight subjects who underwent brain 18F-FDG PET/MRI were recruited. The structural and functional coupling at the regional level was explored by calculating within-subject Spearman's correlation between glucose metabolism (GluM) and cortical thickness (CTh) across the cortex for each subject, which was then correlated with age to explore its physiological effects. Then, subjects were divided into groups of middle-aged and young adults and older adults (OAs); structural connectivity (SC) based on CTh and functional connectivity (FC) based on GluM were constructed for the two groups, respectively, followed by exploring the connective-level structural and functional coupling on SC and FC matrices. The global and local efficiency values of the brain SC and FC were also evaluated. Results: Of the subjects, 97.83% exhibited a significant negative correlation between regional CTh and GluM (r = -0.24 to -0.71, p < 0.05, FDR correction), and this CTh-GluM correlation was negatively correlated with age (R = -0.35, p < 0.001). For connectivity matrices, many regions showed positive correlation between SC and FC, especially in the OA group. Besides, FC exhibited denser connections than SC, resulting in both higher global and local efficiency, but lower global efficiency when the network size was corrected. Conclusions: This study found couplings between CTh and GluM at both regional and connective levels, which reflected the aging progress, and might provide new insight into brain disorders. Impact statement The intricate interplay between brain structures and functions plays a pivotal role in unraveling the complexities inherent in the aging process and the pathogenesis of neurological disorders. This study revealed that 97.83% subjects showed negative correlation between the brain's regional cortical thickness and glucose metabolism, while at the connective level, many regions showed positive correlations between structural and functional connectivity. The observed coupling at the regional and connective levels reflected physiological progress, such as aging, and provides insights into the brain mechanisms and potential implications for the diagnosis and treatment of brain disorders.


Subject(s)
Brain Diseases , Magnetic Resonance Imaging , Middle Aged , Young Adult , Humans , Aged , Brain/pathology , Brain Cortical Thickness , Brain Diseases/pathology , Glucose/metabolism , Positron-Emission Tomography
15.
Brain Commun ; 6(1): fcae010, 2024.
Article in English | MEDLINE | ID: mdl-38304005

ABSTRACT

Subjective cognitive decline is potentially the earliest symptom of Alzheimer's disease, whose objective neurological basis remains elusive. To explore the potential biomarkers for subjective cognitive decline, we developed a novel deep learning method based on multiscale dynamical brain functional networks to identify subjective cognitive declines. We retrospectively constructed an internal data set (with 112 subjective cognitive decline and 64 healthy control subjects) to develop and internally validate the deep learning model. Conventional deep learning methods based on static and dynamic brain functional networks are compared. After the model is established, we prospectively collect an external data set (26 subjective cognitive decline and 12 healthy control subjects) for testing. Meanwhile, our method provides monitoring of the transitions between normal and abnormal (subjective cognitive decline-related) dynamical functional network states. The features of abnormal dynamical functional network states are quantified by network and variability metrics and associated with individual cognitions. Our method achieves an area under the receiver operating characteristic curve of 0.807 ± 0.046 in the internal validation data set and of 0.707 (P = 0.007) in the external testing data set, which shows improvements compared to conventional methods. The method further suggests that, at the local level, the abnormal dynamical functional network states are characterized by decreased connectivity strength and increased connectivity variability at different spatial scales. At the network level, the abnormal states are featured by scale-specifically altered modularity and all-scale decreased efficiency. Low tendencies to stay in abnormal states and high state transition variabilities are significantly associated with high general, language and executive functions. Overall, our work supports the deficits in multiscale brain dynamical functional networks detected by the deep learning method as reliable and meaningful neural alternation underpinning subjective cognitive decline.

16.
Biomed Pharmacother ; 172: 116252, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325265

ABSTRACT

PURPOSE: Type 2 diabetes mellitus (T2DM) is associated with a greater risk of Alzheimer's disease. Synaptic impairment and protein aggregates have been reported in the brains of T2DM models. Here, we assessed whether neurodegenerative changes in synaptic vesicle 2 A (SV2A), γ-aminobutyric acid type A (GABAA) receptor, amyloid-ß, tau and receptor for advanced glycosylation end product (RAGE) can be detected in vivo in T2DM rats. METHODS: Positron emission tomography (PET) using [18F]SDM-8 (SV2A), [18F]flumazenil (GABAA receptor), [18F]florbetapir (amyloid-ß), [18F]PM-PBB3 (tau), and [18F]FPS-ZM1 (RAGE) was carried out in 12-month-old diabetic Zucker diabetic fatty (ZDF) and SpragueDawley (SD) rats. Immunofluorescence staining, Thioflavin S staining, proteomic profiling and pathway analysis were performed on the brain tissues of ZDF and SD rats. RESULTS: Reduced cortical [18F]SDM-8 uptake and cortical and hippocampal [18F]flumazenil uptake were observed in 12-month-old ZDF rats compared to SD rats. The regional uptake of [18F]florbetapir and [18F]PM-PBB3 was comparable in the brains of 12-month-old ZDF and SD rats. Immunofluorescence staining revealed Thioflavin S-negative, phospho-tau-positive inclusions in the cortex and hypothalamus in the brains of ZDF rats and the absence of amyloid-beta deposits. The level of GABAA receptors was lower in the cortex of ZDF rats than SD rats. Proteomic analysis further demonstrated that, compared with SD rats, synaptic-related proteins and pathways were downregulated in the hippocampus of ZDF rats. CONCLUSION: These findings provide in vivo evidence for regional reductions in SV2A and GABAA receptor levels in the brains of aged T2DM ZDF rats.


Subject(s)
Aniline Compounds , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Ethylene Glycols , Fluorine Radioisotopes , Pyridines , Pyrrolidines , Rats , Animals , Flumazenil/metabolism , Receptors, GABA-A/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Synaptic Vesicles/metabolism , Proteomics , Rats, Zucker , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , gamma-Aminobutyric Acid/metabolism
17.
Alzheimers Res Ther ; 16(1): 9, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38217040

ABSTRACT

BACKGROUND: Metabotropic glutamate receptor 5 (mGluR5) is involved in regulating integrative brain function and synaptic transmission. Aberrant mGluR5 signaling and relevant synaptic failure play a key role in the initial pathophysiological mechanism of Alzheimer's disease (AD). The study aims to investigate the association between mGluR5 availability and AD's biomarkers and cognitive function. METHODS: We examined 35 individuals with mGluR5 tracer [18F]PSS232 to assess mGluR5 availability, and with [18F]Florbetapir PET to assess global amyloid deposition, and [18F]FDG PET to assess glucose metabolism. The plasma neurofilament light (NfL) and p-tau181 levels in a subset of individuals were measured (n = 27). The difference in mGluR5 availability between the AD and normal control (NC) groups was explored. The associations of mGluR5 availability with amyloid deposition, glucose metabolism, gray matter volume (GMV), neuropsychological assessment scores, and plasma biomarkers were analyzed. RESULTS: The mGluR5 availability was significantly reduced in AD patients' hippocampus and parahippocampal gyrus compared to NCs. Global amyloid deposition was positively associated with mGluR5 availability in the AD group and reversely associated in the NC group. The mGluR5 availability was positively correlated with regional glucose metabolism in the overall and stratified analyses. The availability of mGluR5 in the hippocampus and parahippocampal gyrus demonstrated a strong relationship with the GMV of the medial temporal lobe, plasma p-tau181 or NfL levels, and global cognitive performance. CONCLUSIONS: [18F]PSS232 PET can quantify the changes of mGluR5 availability in the progression of AD. mGluR5 availability correlated not only with neuropathological biomarkers of AD but also with neurodegenerative biomarkers and cognitive performance. mGluR5 may be a novel neurodegenerative biomarker, and whether mGluR5 could be a potential therapeutic target for AD needs to be further studied.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Oximes , Pyridines , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Biomarkers/metabolism , Brain/metabolism , Cognitive Dysfunction/metabolism , Glucose/metabolism , Magnetic Resonance Imaging , Positron-Emission Tomography , Receptor, Metabotropic Glutamate 5/metabolism
18.
J Cereb Blood Flow Metab ; : 271678X241230733, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38295871

ABSTRACT

A newly developed SV2A radiotracer, 18F-SynVesT-1, was used in this study to investigate synaptic density and its association with Alzheimer's disease (AD) "A/T/N" biomarkers. The study included a cohort of 97 subjects, consisting of 64 patients with cognitive impairment (CI) and 33 individuals with normal cognition (CU). All subjects underwent 18F-SynVesT-1 PET/MR and 18F-florbetapir PET/CT scans. Additionally, a subgroup of individuals also underwent 18F-MK-6240, 18F-FDG PET/CT, plasma Aß42/Aß40 and p-tau181 tests. The differences in synaptic density between the groups and the correlations between synaptic density and AD "A/T/N" biomarkers were analyzed. The results showed that compared to the CU group, the CI with Aß+ (CI+) group exhibited the most pronounced synapse loss in the hippocampus, with some loss also observed in the neocortex. Furthermore, synaptic density in the hippocampus and parahippocampal gyrus showed associations with AD biomarkers detected by both imaging and plasma tests in the CI group. The associations between synaptic density and FDG uptake and hippocampal volume were also observed in the CI+ group. In conclusion, the study demonstrated significant synaptic density loss, as measured by the promising tracer 18F-SynVesT-1, and its close correlation with "A/T/N" biomarkers in patients with both Alzheimer's clinical syndrome and pathological changes.

19.
Eur J Nucl Med Mol Imaging ; 51(5): 1423-1435, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110710

ABSTRACT

PURPOSE: Determination of isocitrate dehydrogenase (IDH) genotype is crucial in the stratification of diagnosis and prognostication in diffuse gliomas. We sought to build and validate radiomics models and clinical features incorporated nomogram for preoperative prediction of IDH mutation status and WHO grade of diffuse gliomas with L-[methyl-11C] methionine ([11C]MET) PET/CT imaging according to the 2016 WHO classification of tumors of the central nervous system. METHODS: Consecutive 178 preoperative [11C]MET PET/CT images were retrospectively studied for radiomics analysis. One hundred six patients from PET scanner 1 were used as training dataset, and 72 patients from PET scanner 2 were used for validation dataset. [11C]MET PET and integrated CT radiomics features were extracted, respectively; three independent predictive models were built based on PET features, CT features, and combined PET/CT features, respectively. The SelectKBest method, Spearman correlation analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and machine learning algorithms were applied for feature selection and model building. After filtering the satisfactory predictive model, key clinical features were incorporated for the nomogram establishment. RESULTS: The combined [11C]MET PET/CT radiomics model, which consisted of four PET features and eight integrated CT features, was significantly associated with IDH genotype (p < 0.0001 for both training and validation datasets). Nomogram based on the [11C]MET PET/CT radiomics score, patients' age, and dichotomous tumor location status showed satisfactory discrimination capacity, and the AUC was 0.880 (95% CI, 0.726-0.998) in the training dataset and 0.866 (95% CI, 0.777-0.956) in the validation dataset. In IDH stratified WHO grade prediction, the final radiomics model consists of four PET features and two CT features had reasonable and stable differential efficacy of WHO grade II and III patients from grade IV patients in IDH-wildtype patients, and the AUC was 0.820 (95% CI, 0.541-1.000) in the training dataset and 0.766 (95% CI, 0.612-0.921) in the validation dataset. CONCLUSION: [11C]MET PET radiomics features could benefit non-invasive IDH genotype prediction, and integrated CT radiomics features could enhance the efficacy. Radiomics and clinical features incorporation could establish satisfactory nomogram for clinical application. This non-invasive predictive investigation based on our consecutive cohort from two PET scanners could provide the perspective to observe the differential efficacy and the stability of radiomics-based investigation in untreated diffuse gliomas.


Subject(s)
Brain Neoplasms , Glioma , Humans , Isocitrate Dehydrogenase/genetics , Cohort Studies , Methionine , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Retrospective Studies , Magnetic Resonance Imaging/methods , Positron Emission Tomography Computed Tomography , Radiomics , Carbon Radioisotopes , Glioma/diagnostic imaging , Glioma/genetics , Glioma/pathology , Racemethionine , Mutation , World Health Organization
20.
Eur Radiol ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37889270

ABSTRACT

OBJECTIVES: Amyloid deposition is considered the initial pathology in Alzheimer's disease (AD). Personalized management requires investigation of amyloid pathology and the risk factors for both amyloid pathology and cognitive decline in the Chinese population. We aimed to investigate amyloid positivity and deposition in AD patients, as well as factors related to amyloid pathology in Chinese cities. METHODS: This cross-sectional multicenter study was conducted in Shanghai and Zhengzhou, China. All participants were recruited from urban communities and memory clinics. Amyloid positivity and deposition were analyzed based on amyloid positron emission tomography (PET). We used partial least squares (PLS) models to investigate how related factors contributed to amyloid deposition and cognitive decline. RESULTS: In total, 1026 participants were included: 768 participants from the community-based cohort (COMC) and 258 participants from the clinic-based cohort (CLIC). The overall amyloid-positive rates in individuals with clinically diagnosed AD, mild cognitive impairment (MCI), and normal cognition (NC) were 85.8%, 44.5%, and 26.9%, respectively. The global amyloid deposition standardized uptake value ratios (SUVr) (reference: cerebellar crus) were 1.44 ± 0.24, 1.30 ± 0.22, and 1.24 ± 0.14, respectively. CLIC status, apolipoprotein E (ApoE) ε4, and older age were strongly associated with amyloid pathology by PLS modeling. CONCLUSION: The overall amyloid-positive rates accompanying AD, MCI, and NC in the Chinese population were similar to those in published cohorts of other populations. ApoE ε4 and CLIC status were risk factors for amyloid pathology across the AD continuum. Education was a risk factor for amyloid pathology in MCI. Female sex and age were risk factors for amyloid pathology in NC. CLINICAL RELEVANCE STATEMENT: This study provides new details about amyloid pathology in the Chinese population. Factors related to amyloid deposition and cognitive decline can help to assess patients' AD risk. KEY POINTS: • We studied amyloid pathology and related risk factors in the Chinese population. •·The overall amyloid-positive rates in individuals with clinically diagnosed AD, MCI, and NC were 85.8%, 44.5%, and 26.9%, respectively. • These overall amyloid-positive rates were in close agreement with the corresponding prevalence for other populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...