Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3532, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670964

ABSTRACT

Dirac and Weyl semimetals are a central topic of contemporary condensed matter physics, and the discovery of new compounds with Dirac/Weyl electronic states is crucial to the advancement of topological materials and quantum technologies. Here we show a widely applicable strategy that uses high configuration entropy to engineer relativistic electronic states. We take the AMnSb2 (A = Ba, Sr, Ca, Eu, and Yb) Dirac material family as an example and demonstrate that mixing of Ba, Sr, Ca, Eu and Yb at the A site generates the compound (Ba0.38Sr0.14Ca0.16Eu0.16Yb0.16)MnSb2 (denoted as A5MnSb2), giving access to a polar structure with a space group that is not present in any of the parent compounds. A5MnSb2 is an entropy-stabilized phase that preserves its linear band dispersion despite considerable lattice disorder. Although both A5MnSb2 and AMnSb2 have quasi-two-dimensional crystal structures, the two-dimensional Dirac states in the pristine AMnSb2 evolve into a highly anisotropic quasi-three-dimensional Dirac state triggered by local structure distortions in the high-entropy phase, which is revealed by Shubnikov-de Haas oscillations measurements.

2.
Inorg Chem ; 63(8): 3648-3655, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38353046

ABSTRACT

We report the crystal growth and characterization of a rare-earth-containing material, Dy3.00(1)Pt2Sb4.48(2). This compound possesses a similar structure to the previously reported Y3Pt4Ge6, but it lacks two layers of Pt atoms. Crystallographic disorder was found in Dy3.00(1)Pt2Sb4.48(2). Additionally, the Dy-Dy framework was found to have both square net and triangular lattices. Dy3.00(1)Pt2Sb4.48(2)8 was determined to be antiferromagnetically ordered around ∼15 K while a competing antiferromagnetic sublattice also exists at lower temperature. Strong magnetic anisotropy was observed, and several metamagnetic transitions were seen in the hysteresis loops. Furthermore, the Curie-Weiss fitting revealed an unusually small effective moment of Dy, which is far below the expected value of Dy3+ (10.65 µB). This material might provide a new platform to study the relationship between crystallographic disorder and magnetism.

4.
J Am Chem Soc ; 145(8): 4683-4690, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36795912

ABSTRACT

The valleytronic state found in group-VI transition-metal dichalcogenides such as MoS2 has attracted immense interest since its valley degree of freedom could be used as an information carrier. However, valleytronic applications require spontaneous valley polarization. Such an electronic state is predicted to be accessible in a new ferroic family of materials, i.e., ferrovalley materials, which features the coexistence of spontaneous spin and valley polarization. Although many atomic monolayer materials with hexagonal lattices have been predicted to be ferrovalley materials, no bulk ferrovalley material candidates have been reported or proposed. Here, we show that a new non-centrosymmetric van der Waals (vdW) semiconductor Cr0.32Ga0.68Te2.33, with intrinsic ferromagnetism, is a possible candidate for bulk ferrovalley material. This material exhibits several remarkable characteristics: (i) it forms a natural heterostructure between vdW gaps, a quasi-two-dimensional (2D) semiconducting Te layer with a honeycomb lattice stacked on the 2D ferromagnetic slab comprised of the (Cr, Ga)-Te layers, and (ii) the 2D Te honeycomb lattice yields a valley-like electronic structure near the Fermi level, which, in combination with inversion symmetry breaking, ferromagnetism, and strong spin-orbit coupling contributed by heavy Te element, creates a possible bulk spin-valley locked electronic state with valley polarization as suggested by our DFT calculations. Further, this material can also be easily exfoliated to 2D atomically thin layers. Therefore, this material offers a unique platform to explore the physics of valleytronic states with spontaneous spin and valley polarization in both bulk and 2D atomic crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...