Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
BMC Bioinformatics ; 25(1): 6, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166644

ABSTRACT

According to the expression of miRNA in pathological processes, miRNAs can be divided into oncogenes or tumor suppressors. Prediction of the regulation relations between miRNAs and small molecules (SMs) becomes a vital goal for miRNA-target therapy. But traditional biological approaches are laborious and expensive. Thus, there is an urgent need to develop a computational model. In this study, we proposed a computational model to predict whether the regulatory relationship between miRNAs and SMs is up-regulated or down-regulated. Specifically, we first use the Large-scale Information Network Embedding (LINE) algorithm to construct the node features from the self-similarity networks, then use the General Attributed Multiplex Heterogeneous Network Embedding (GATNE) algorithm to extract the topological information from the attribute network, and finally utilize the Light Gradient Boosting Machine (LightGBM) algorithm to predict the regulatory relationship between miRNAs and SMs. In the fivefold cross-validation experiment, the average accuracies of the proposed model on the SM2miR dataset reached 79.59% and 80.37% for up-regulation pairs and down-regulation pairs, respectively. In addition, we compared our model with another published model. Moreover, in the case study for 5-FU, 7 of 10 candidate miRNAs are confirmed by related literature. Therefore, we believe that our model can promote the research of miRNA-targeted therapy.


Subject(s)
MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Computational Biology , Algorithms , Oncogenes
2.
Front Genet ; 14: 1122909, 2023.
Article in English | MEDLINE | ID: mdl-36845392

ABSTRACT

LncRNA-protein interaction plays an important role in the development and treatment of many human diseases. As the experimental approaches to determine lncRNA-protein interactions are expensive and time-consuming, considering that there are few calculation methods, therefore, it is urgent to develop efficient and accurate methods to predict lncRNA-protein interactions. In this work, a model for heterogeneous network embedding based on meta-path, namely LPIH2V, is proposed. The heterogeneous network is composed of lncRNA similarity networks, protein similarity networks, and known lncRNA-protein interaction networks. The behavioral features are extracted in a heterogeneous network using the HIN2Vec method of network embedding. The results showed that LPIH2V obtains an AUC of 0.97 and ACC of 0.95 in the 5-fold cross-validation test. The model successfully showed superiority and good generalization ability. Compared to other models, LPIH2V not only extracts attribute characteristics by similarity, but also acquires behavior properties by meta-path wandering in heterogeneous networks. LPIH2V would be beneficial in forecasting interactions between lncRNA and protein.

3.
J Transl Med ; 21(1): 48, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36698208

ABSTRACT

BACKGROUND: Drug-target interaction (DTI) prediction has become a crucial prerequisite in drug design and drug discovery. However, the traditional biological experiment is time-consuming and expensive, as there are abundant complex interactions present in the large size of genomic and chemical spaces. For alleviating this phenomenon, plenty of computational methods are conducted to effectively complement biological experiments and narrow the search spaces into a preferred candidate domain. Whereas, most of the previous approaches cannot fully consider association behavior semantic information based on several schemas to represent complex the structure of heterogeneous biological networks. Additionally, the prediction of DTI based on single modalities cannot satisfy the demand for prediction accuracy. METHODS: We propose a multi-modal representation framework of 'DeepMPF' based on meta-path semantic analysis, which effectively utilizes heterogeneous information to predict DTI. Specifically, we first construct protein-drug-disease heterogeneous networks composed of three entities. Then the feature information is obtained under three views, containing sequence modality, heterogeneous structure modality and similarity modality. We proposed six representative schemas of meta-path to preserve the high-order nonlinear structure and catch hidden structural information of the heterogeneous network. Finally, DeepMPF generates highly representative comprehensive feature descriptors and calculates the probability of interaction through joint learning. RESULTS: To evaluate the predictive performance of DeepMPF, comparison experiments are conducted on four gold datasets. Our method can obtain competitive performance in all datasets. We also explore the influence of the different feature embedding dimensions, learning strategies and classification methods. Meaningfully, the drug repositioning experiments on COVID-19 and HIV demonstrate DeepMPF can be applied to solve problems in reality and help drug discovery. The further analysis of molecular docking experiments enhances the credibility of the drug candidates predicted by DeepMPF. CONCLUSIONS: All the results demonstrate the effectively predictive capability of DeepMPF for drug-target interactions. It can be utilized as a useful tool to prescreen the most potential drug candidates for the protein. The web server of the DeepMPF predictor is freely available at http://120.77.11.78/DeepMPF/ , which can help relevant researchers to further study.


Subject(s)
COVID-19 , Deep Learning , Humans , Molecular Docking Simulation , Semantics , Drug Discovery/methods , Proteins
4.
Front Genet ; 13: 958096, 2022.
Article in English | MEDLINE | ID: mdl-36051691

ABSTRACT

Emerging evidence has revealed that circular RNA (circRNA) is widely distributed in mammalian cells and functions as microRNA (miRNA) sponges involved in transcriptional and posttranscriptional regulation of gene expression. Recognizing the circRNA-miRNA interaction provides a new perspective for the detection and treatment of human complex diseases. Compared with the traditional biological experimental methods used to predict the association of molecules, which are limited to the small-scale and are time-consuming and laborious, computing models can provide a basis for biological experiments at low cost. Considering that the proposed calculation model is limited, it is necessary to develop an effective computational method to predict the circRNA-miRNA interaction. This study thus proposed a novel computing method, named KGDCMI, to predict the interactions between circRNA and miRNA based on multi-source information extraction and fusion. The KGDCMI obtains RNA attribute information from sequence and similarity, capturing the behavior information in RNA association through a graph-embedding algorithm. Then, the obtained feature vector is extracted further by principal component analysis and sent to the deep neural network for information fusion and prediction. At last, KGDCMI obtains the prediction accuracy (area under the curve [AUC] = 89.30% and area under the precision-recall curve [AUPR] = 87.67%). Meanwhile, with the same dataset, KGDCMI is 2.37% and 3.08%, respectively, higher than the only existing model, and we conducted three groups of comparative experiments, obtaining the best classification strategy, feature extraction parameters, and dimensions. In addition, in the performed case study, 7 of the top 10 interaction pairs were confirmed in PubMed. These results suggest that KGDCMI is a feasible and useful method to predict the circRNA-miRNA interaction and can act as a reliable candidate for related RNA biological experiments.

5.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-36070624

ABSTRACT

Drug-drug interactions (DDIs) prediction is a challenging task in drug development and clinical application. Due to the extremely large complete set of all possible DDIs, computer-aided DDIs prediction methods are getting lots of attention in the pharmaceutical industry and academia. However, most existing computational methods only use single perspective information and few of them conduct the task based on the biomedical knowledge graph (BKG), which can provide more detailed and comprehensive drug lateral side information flow. To this end, a deep learning framework, namely DeepLGF, is proposed to fully exploit BKG fusing local-global information to improve the performance of DDIs prediction. More specifically, DeepLGF first obtains chemical local information on drug sequence semantics through a natural language processing algorithm. Then a model of BFGNN based on graph neural network is proposed to extract biological local information on drug through learning embedding vector from different biological functional spaces. The global feature information is extracted from the BKG by our knowledge graph embedding method. In DeepLGF, for fusing local-global features well, we designed four aggregating methods to explore the most suitable ones. Finally, the advanced fusing feature vectors are fed into deep neural network to train and predict. To evaluate the prediction performance of DeepLGF, we tested our method in three prediction tasks and compared it with state-of-the-art models. In addition, case studies of three cancer-related and COVID-19-related drugs further demonstrated DeepLGF's superior ability for potential DDIs prediction. The webserver of the DeepLGF predictor is freely available at http://120.77.11.78/DeepLGF/.


Subject(s)
COVID-19 Drug Treatment , Pattern Recognition, Automated , Drug Interactions , Humans , Knowledge Bases , Neural Networks, Computer
6.
Biology (Basel) ; 11(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36138829

ABSTRACT

Computational prediction of miRNAs, diseases, and genes associated with circRNAs has important implications for circRNA research, as well as provides a reference for wet experiments to save costs and time. In this study, SGCNCMI, a computational model combining multimodal information and graph convolutional neural networks, combines node similarity to form node information and then predicts associated nodes using GCN with a distributive contribution mechanism. The model can be used not only to predict the molecular level of circRNA-miRNA interactions but also to predict circRNA-cancer and circRNA-gene associations. The AUCs of circRNA-miRNA, circRNA-disease, and circRNA-gene associations in the five-fold cross-validation experiment of SGCNCMI is 89.42%, 84.18%, and 82.44%, respectively. SGCNCMI is one of the few models in this field and achieved the best results. In addition, in our case study, six of the top ten relationship pairs with the highest prediction scores were verified in PubMed.

7.
Front Genet ; 13: 919264, 2022.
Article in English | MEDLINE | ID: mdl-35910223

ABSTRACT

As a novel target in pharmacy, microRNA (miRNA) can regulate gene expression under specific disease conditions to produce specific proteins. To date, many researchers leveraged miRNA to reveal drug efficacy and pathogenesis at the molecular level. As we all know that conventional wet experiments suffer from many problems, including time-consuming, labor-intensity, and high cost. Thus, there is an urgent need to develop a novel computational model to facilitate the identification of miRNA-drug interactions (MDIs). In this work, we propose a novel bipartite network embedding-based method called BNEMDI to predict MDIs. First, the Bipartite Network Embedding (BiNE) algorithm is employed to learn the topological features from the network. Then, the inherent attributes of drugs and miRNAs are expressed as attribute features by MACCS fingerprints and k-mers. Finally, we feed these features into deep neural network (DNN) for training the prediction model. To validate the prediction ability of the BNEMDI model, we apply it to five different benchmark datasets under five-fold cross-validation, and the proposed model obtained excellent AUC values of 0.9568, 0.9420, 0.8489, 0.8774, and 0.9005 in ncDR, RNAInter, SM2miR1, SM2miR2, and SM2miR MDI datasets, respectively. To further verify the prediction performance of the BNEMDI model, we compare it with some existing powerful methods. We also compare the BiNE algorithm with several different network embedding methods. Furthermore, we carry out a case study on a common drug named 5-fluorouracil. Among the top 50 miRNAs predicted by the proposed model, there were 38 verified by the experimental literature. The comprehensive experiment results demonstrated that our method is effective and robust for predicting MDIs. In the future work, we hope that the BNEMDI model can be a reliable supplement method for the development of pharmacology and miRNA therapeutics.

8.
Biology (Basel) ; 11(5)2022 May 16.
Article in English | MEDLINE | ID: mdl-35625486

ABSTRACT

During the development of drug and clinical applications, due to the co-administration of different drugs that have a high risk of interfering with each other's mechanisms of action, correctly identifying potential drug-drug interactions (DDIs) is important to avoid a reduction in drug therapeutic activities and serious injuries to the organism. Therefore, to explore potential DDIs, we develop a computational method of integrating multi-level information. Firstly, the information of chemical sequence is fully captured by the Natural Language Processing (NLP) algorithm, and multiple biological function similarity information is fused by Similarity Network Fusion (SNF). Secondly, we extract deep network structure information through Hierarchical Representation Learning for Networks (HARP). Then, a highly representative comprehensive feature descriptor is constructed through the self-attention module that efficiently integrates biochemical and network features. Finally, a deep neural network (DNN) is employed to generate the prediction results. Contrasted with the previous supervision model, BioChemDDI innovatively introduced graph collapse for extracting a network structure and utilized the biochemical information during the pre-training process. The prediction results of the benchmark dataset indicate that BioChemDDI outperforms other existing models. Moreover, the case studies related to three cancer diseases, including breast cancer, hepatocellular carcinoma and malignancies, were analyzed using BioChemDDI. As a result, 24, 18 and 20 out of the top 30 predicted cancer-related drugs were confirmed by the databases. These experimental results demonstrate that BioChemDDI is a useful model to predict DDIs and can provide reliable candidates for biological experiments. The web server of BioChemDDI predictor is freely available to conduct further studies.

9.
Front Genet ; 13: 839540, 2022.
Article in English | MEDLINE | ID: mdl-35360836

ABSTRACT

Non-coding RNAs (ncRNAs) take essential effects on biological processes, like gene regulation. One critical way of ncRNA executing biological functions is interactions between ncRNA and RNA binding proteins (RBPs). Identifying proteins, involving ncRNA-protein interactions, can well understand the function ncRNA. Many high-throughput experiment have been applied to recognize the interactions. As a consequence of these approaches are time- and labor-consuming, currently, a great number of computational methods have been developed to improve and advance the ncRNA-protein interactions research. However, these methods may be not available to all RNAs and proteins, particularly processing new RNAs and proteins. Additionally, most of them cannot process well with long sequence. In this work, a computational method SAWRPI is proposed to make prediction of ncRNA-protein through sequence information. More specifically, the raw features of protein and ncRNA are firstly extracted through the k-mer sparse matrix with SVD reduction and learning nucleic acid symbols by natural language processing with local fusion strategy, respectively. Then, to classify easily, Hilbert Transformation is exploited to transform raw feature data to the new feature space. Finally, stacking ensemble strategy is adopted to learn high-level abstraction features automatically and generate final prediction results. To confirm the robustness and stability, three different datasets containing two kinds of interactions are utilized. In comparison with state-of-the-art methods and other results classifying or feature extracting strategies, SAWRPI achieved high performance on three datasets, containing two kinds of lncRNA-protein interactions. Upon our finding, SAWRPI is a trustworthy, robust, yet simple and can be used as a beneficial supplement to the task of predicting ncRNA-protein interactions.

10.
Brief Funct Genomics ; 21(3): 216-229, 2022 05 21.
Article in English | MEDLINE | ID: mdl-35368060

ABSTRACT

The way of co-administration of drugs is a sensible strategy for treating complex diseases efficiently. Because of existing massive unknown interactions among drugs, predicting potential adverse drug-drug interactions (DDIs) accurately is promotive to prevent unanticipated interactions, which may cause significant harm to patients. Currently, numerous computational studies are focusing on potential DDIs prediction on account of traditional experiments in wet lab being time-consuming, labor-consuming, costly and inaccurate. These approaches performed well; however, many approaches did not consider multi-scale features and have the limitation that they cannot predict interactions among novel drugs. In this paper, we proposed a model of BioDKG-DDI, which integrates multi-feature with biochemical information to predict potential DDIs through an attention machine with superior performance. Molecular structure features, representation of drug global association using drug knowledge graph (DKG) and drug functional similarity features are fused by attention machine and predicted through deep neural network. A novel negative selecting method is proposed to certify the robustness and stability of our method. Then, three datasets with different sizes are used to test BioDKG-DDI. Furthermore, the comparison experiments and case studies can demonstrate the reliability of our method. Upon our finding, BioDKG-DDI is a robust, yet simple method and can be used as a benefic supplement to the experimental process.


Subject(s)
Neural Networks, Computer , Pattern Recognition, Automated , Drug Interactions , Humans , Pharmaceutical Preparations , Reproducibility of Results
11.
J Environ Manage ; 312: 114954, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35338985

ABSTRACT

Estuarine wetlands are often located in economically developed and densely populated estuarine deltas, which are frequently disturbed and threatened by human activities. Reclamation, as an important way to alleviate the demand for local land resources, can lead to habitat destruction of natural coastal wetlands and weakening of ecological service functions, including carbon sink capacity. Research has shown that poor plant growth and weakened carbon fixation were the main reasons for the reduced carbon sequestration in a reclaimed wetland. This study aimed to examine the impacts of plant management on the improvement or restoration of carbon sink function in Chongming Dongtan reclaimed wetland, located in the Yangtze River Estuary, China. A management pattern that could effectively enhance the carbon sink function of the reclaimed wetland was selected based on analyses of the effects of different plant harvesting and management patterns (no harvesting, harvesting without returning to the field, direct straw return, and charred straw return) on the plant growth, carbon fixation, and soil respiration, combined with whole-life-cycle carbon footprint evaluation from straw harvest to field return. Compared with no harvesting, the aboveground biomass of direct straw return and charred straw return increased by about 12.3% and 15.5%, respectively (P < 0.05). Simultaneously, straw charring released the least amount of CO2 (1.94 µmol m-2 s-1) and inhibited degradation of soil organic carbon through affecting its microbial community structure. Moreover, considering the carbon budget of different patterns, the charred straw return pattern also most effectively enhanced the carbon sink function and thus could be used for subsequent improvement of carbon sequestration in reclaimed wetlands.


Subject(s)
Estuaries , Wetlands , Carbon/analysis , Carbon Sequestration , China , Humans , Plants , Rivers , Soil/chemistry
12.
Biology (Basel) ; 12(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36671734

ABSTRACT

Abnormal microRNA (miRNA) functions play significant roles in various pathological processes. Thus, predicting drug-miRNA associations (DMA) may hold great promise for identifying the potential targets of drugs. However, discovering the associations between drugs and miRNAs through wet experiments is time-consuming and laborious. Therefore, it is significant to develop computational prediction methods to improve the efficiency of identifying DMA on a large scale. In this paper, a multiple features integration model (MFIDMA) is proposed to predict drug-miRNA association. Specifically, we first formulated known DMA as a bipartite graph and utilized structural deep network embedding (SDNE) to learn the topological features from the graph. Second, the Word2vec algorithm was utilized to construct the attribute features of the miRNAs and drugs. Third, two kinds of features were entered into the convolution neural network (CNN) and deep neural network (DNN) to integrate features and predict potential target miRNAs for the drugs. To evaluate the MFIDMA model, it was implemented on three different datasets under a five-fold cross-validation and achieved average AUCs of 0.9407, 0.9444 and 0.8919. In addition, the MFIDMA model showed reliable results in the case studies of Verapamil and hsa-let-7c-5p, confirming that the proposed model can also predict DMA in real-world situations. The model was effective in analyzing the neighbors and topological features of the drug-miRNA network by SDNE. The experimental results indicated that the MFIDMA is an accurate and robust model for predicting potential DMA, which is significant for miRNA therapeutics research and drug discovery.

13.
Evol Bioinform Online ; 17: 11769343211050067, 2021.
Article in English | MEDLINE | ID: mdl-34671178

ABSTRACT

Protein-protein interactions (PPIs) in plants are essential for understanding the regulation of biological processes. Although high-throughput technologies have been widely used to identify PPIs, they are usually laborious, expensive, and suffer from high false-positive rates. Therefore, it is imperative to develop novel computational approaches as a supplement tool to detect PPIs in plants. In this work, we presented a method, namely DST-RoF, to identify PPIs in plants by combining an ensemble learning classifier-Rotation Forest (RoF) with discrete sine transformation (DST). Specifically, plant protein sequence is firstly converted into Position-Specific Scoring Matrix (PSSM). Then, the discrete sine transformation was employed to extract effective features for obtaining the evolutionary information of proteins. Finally, these optimal features were fed into the RoF classifier for training and prediction. When performed on the plant datasets Arabidopsis, Rice, and Maize, DST-RoF yielded high prediction accuracy of 82.95%, 88.82%, and 93.70%, respectively. To further evaluate the prediction ability of our approach, we compared it with 4 state-of-the-art classifiers and 3 different feature extraction methods. Comprehensive experimental results anticipated that our method is feasible and robust for predicting potential plant-protein interacted pairs.

14.
Front Genet ; 12: 745228, 2021.
Article in English | MEDLINE | ID: mdl-34616437

ABSTRACT

Protein-protein interactions (PPIs) in plants play an essential role in the regulation of biological processes. However, traditional experimental methods are expensive, time-consuming, and need sophisticated technical equipment. These drawbacks motivated the development of novel computational approaches to predict PPIs in plants. In this article, a new deep learning framework, which combined the discrete Hilbert transform (DHT) with deep neural networks (DNN), was presented to predict PPIs in plants. To be more specific, plant protein sequences were first transformed as a position-specific scoring matrix (PSSM). Then, DHT was employed to capture features from the PSSM. To improve the prediction accuracy, we used the singular value decomposition algorithm to decrease noise and reduce the dimensions of the feature descriptors. Finally, these feature vectors were fed into DNN for training and predicting. When performing our method on three plant PPI datasets Arabidopsis thaliana, maize, and rice, we achieved good predictive performance with average area under receiver operating characteristic curve values of 0.8369, 0.9466, and 0.9440, respectively. To fully verify the predictive ability of our method, we compared it with different feature descriptors and machine learning classifiers. Moreover, to further demonstrate the generality of our approach, we also test it on the yeast and human PPI dataset. Experimental results anticipated that our method is an efficient and promising computational model for predicting potential plant-protein interacted pairs.

15.
Sci Total Environ ; 799: 149441, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34364283

ABSTRACT

With the increasing pace of global warming, studies of the carbon cycle and carbon sink capacity of estuarine wetlands have received increasing attention. Estuarine wetlands are often located in economically developed and densely populated areas, and their reclamation has become an important way to acquire land resources. To explore the effect of reclamation on the carbon sink function of estuarine wetlands, the Chongming Dongtan reclaimed wetland and Jiuduansha natural wetland, which are located in the Yangtze River estuary, were selected to investigate their variabilities in carbon fluxes and the main influencing factors using the open path eddy covariance flux monitoring system. The CO2 uptake capacity of the Dongtan reclaimed wetland was significantly weaker than that of the Jiuduansha natural wetland (P < 0.05). The difference in carbon fluxes between the two wetlands was mainly influenced by plant growth and carbon fixation, which accounted for 70.7% of the variation, with soil respiration being the second most important factor. The soil water content and nitrogen and phosphorus concentrations in the reclaimed wetland significantly decreased due to the barrier to water flow presented by a dam (P < 0.01). Nitrogen limitation was the main reason for the poor plant growth in the reclaimed wetland. Although nitrogen inputs in the natural wetland promoted soil respiration (40.6%), they were overshadowed by the inhibitory effect of soil moisture and salinity (55.8%). It was therefore possible to improve the carbon sink function of reclaimed wetlands if plant growth and carbon fixation efficiency could be enhanced without promoting soil respiration.


Subject(s)
Estuaries , Wetlands , Carbon Dioxide , China , Rivers , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...