Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 34(12): 9847-9858, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35380974

ABSTRACT

The convolutional neural network (CNN) has achieved great success in fulfilling computer vision tasks despite large computation overhead against efficient deployment. Channel pruning is usually applied to reduce the model redundancy while preserving the network structure, such that the pruned network can be easily deployed in practice. However, existing channel pruning methods require hand-crafted rules, which can result in a degraded model performance with respect to the tremendous potential pruning space given large neural networks. In this article, we introduce differentiable annealing indicator search (DAIS) that leverages the strength of neural architecture search in the channel pruning and automatically searches for the effective pruned model with given constraints on computation overhead. Specifically, DAIS relaxes the binarized channel indicators to be continuous and then jointly learns both indicators and model parameters via bi-level optimization. To bridge the non-negligible discrepancy between the continuous model and the target binarized model, DAIS proposes an annealing-based procedure to steer the indicator convergence toward binarized states. Moreover, DAIS designs various regularizations based on a priori structural knowledge to control the pruning sparsity and to improve model performance. Experimental results show that DAIS outperforms state-of-the-art pruning methods on CIFAR-10, CIFAR-100, and ImageNet.

SELECTION OF CITATIONS
SEARCH DETAIL
...