Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 1014, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803147

ABSTRACT

Observational studies suggest certain sleep traits are associated with telomere length, but the causal nature of these associations is unclear. The study aimed to determine the causal associations between 11 sleep-related traits and leukocyte telomere length (LTL) through two-sample Mendelian randomization and colocalization analyses using the summary statistics from large-scale genome-wide association studies. Univariable Mendelian randomization indicates that genetically determined short sleep is associated with decreased LTL, while morning chronotype is associated with increased LTL. Multivariable Mendelian randomization further supports the findings and colocalization analysis identifies shared common genetic variants for these two associations. No genetic evidence is observed for associations between other sleep-related traits and LTL. Sensitivity MR methods, reverse MR and re-running MR after removing potential pleiotropic genetic variants enhance the robustness of the results. These findings indicate that prioritizing morning chronotype and avoiding short sleep is beneficial for attenuating telomere attrition. Consequently, addressing sleep duration and chronotype could serve as practical intervention strategies.


Subject(s)
Chronotype , Sleep Duration , Genome-Wide Association Study/methods , Mendelian Randomization Analysis/methods , Sleep/genetics , Leukocytes , Telomere/genetics
2.
Cells ; 11(17)2022 08 25.
Article in English | MEDLINE | ID: mdl-36078050

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the dominating causes of cancer-related death throughout the world. Treatment options for patients with HCC vary, however, the lack of effective targeted drugs is the major reason for death in advanced HCC patients. In this study, a delivery system based on mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) loaded with doxorubicin (Dox) was developed. In this system, we initially erased terminal linked α2-3 and α2-6 sialic acids on the surface of EVs by neuraminidase. The exhibition of galactose (Gal) and N-acetylgalactosamine (GalNAc) residues in treated MSC-EVs can specifically be recognized by asialoglycoprotein receptor (ASGPR) of hepatoma cells. Compared to free Dox and Dox-loaded EVs, desialylated EVs loaded with Dox significantly presented the improved cellular uptake, prioritized targeting efficacy, and had a better inhibiting effect in vitro and in vivo. Overall, the results of the present study of the demonstrated delivery system using desialylated MSC-EVs suggest its therapeutic potential for HCC.


Subject(s)
Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , Mesenchymal Stem Cells , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Extracellular Vesicles/metabolism , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Mesenchymal Stem Cells/metabolism
3.
Nat Mater ; 17(10): 915-922, 2018 10.
Article in English | MEDLINE | ID: mdl-30224783

ABSTRACT

Phase transformations driven by compositional change require mass flux across a phase boundary. In some anisotropic solids, however, the phase boundary moves along a non-conductive crystallographic direction. One such material is LiXFePO4, an electrode for lithium-ion batteries. With poor bulk ionic transport along the direction of phase separation, it is unclear how lithium migrates during phase transformations. Here, we show that lithium migrates along the solid/liquid interface without leaving the particle, whereby charge carriers do not cross the double layer. X-ray diffraction and microscopy experiments as well as ab initio molecular dynamics simulations show that organic solvent and water molecules promote this surface ion diffusion, effectively rendering LiXFePO4 a three-dimensional lithium-ion conductor. Phase-field simulations capture the effects of surface diffusion on phase transformation. Lowering surface diffusivity is crucial towards supressing phase separation. This work establishes fluid-enhanced surface diffusion as a key dial for tuning phase transformation in anisotropic solids.

4.
RSC Adv ; 8(38): 21280-21287, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-35539951

ABSTRACT

From a device perspective, achieving great merits for both n- and p-type thermoelectric systems is particularly desirable. By first-principles calculations, electronic, phonon, and thermoelectric transport properties of 2D SiTe with three different structural phases are investigated, which are quadruple layer (QL), black-phosphorene-like (α-SiTe) and blue-phosphorene-like (ß-SiTe), respectively. Of these three structure phases, ß-SiTe possesses the best thermoelectric properties. This is because the DOS peak near the valence band results in a high Seebeck coefficient, further leading to a high power factor. We also demonstrate that strong phonon scattering heavily influences the lattice thermal conductivity K l of ß-SiTe. With the combination of high power factor and low K l, the ZT max value of ß-SiTe reaches 0.95 at T = 1300 K for both n- and p-type doped systems. Therefore, 2D ß-SiTe is a promising candidate for future high-temperature solid-state thermoelectric generators with a balanced performance of the n- and p-legs.

5.
Phys Chem Chem Phys ; 19(34): 23414-23424, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28828436

ABSTRACT

The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.

6.
Nano Lett ; 17(9): 5264-5272, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28817772

ABSTRACT

The minority carrier diffusion length (LD) is a crucial property that determines the performance of light absorbers in photoelectrochemical (PEC) cells. Many transition-metal oxides are stable photoanodes for solar water splitting but exhibit a small to moderate LD, ranging from a few nanometers (such as α-Fe2O3 and TiO2) to a few tens of nanometers (such as BiVO4). Under operating conditions, the temperature of PEC cells can deviate substantially from ambient, yet the temperature dependence of LD has not been quantified. In this work, we show that measuring the photocurrent as a function of both temperature and absorber dimensions provides a quantitative method for evaluating the temperature-dependent minority carrier transport. By measuring photocurrents of nonstoichiometric rutile TiO2-x nanowires as a function of wire radius (19-75 nm) and temperature (10-70 °C), we extract the minority carrier diffusion length along with its activation energy. The minority carrier diffusion length in TiO2-x increases from 5 nm at 25 °C to 10 nm at 70 °C, implying that enhanced carrier mobility outweighs the increase in the recombination rate with temperature. Additionally, by comparing the temperature-dependent photocurrent in BiVO4, TiO2, and α-Fe2O3, we conclude that the ratio of the minority carrier diffusion length to the depletion layer width determines the extent of temperature enhancement, and reconcile the widespread temperature coefficients, which ranged from 0.6 to 1.7% K-1. This insight provides a general design rule to select light absorbers for large thermally activated photocurrents and to predict PEC cell characteristics at a range of temperatures encountered during realistic device operation.

7.
Nat Commun ; 8: 15360, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28516915

ABSTRACT

Elastic strain is being increasingly employed to enhance the catalytic properties of mixed ion-electron conducting oxides. However, its effect on oxygen storage capacity is not well established. Here, we fabricate ultrathin, coherently strained films of CeO2-δ between 5.6% biaxial compression and 2.1% tension. In situ ambient pressure X-ray photoelectron spectroscopy reveals up to a fourfold enhancement in equilibrium oxygen storage capacity under both compression and tension. This non-monotonic variation with strain departs from the conventional wisdom based on a chemical expansion dominated behaviour. Through depth profiling, film thickness variations and a coupled photoemission-thermodynamic analysis of space-charge effects, we show that the enhanced reducibility is not dominated by interfacial effects. On the basis of ab initio calculations of oxygen vacancy formation incorporating defect interactions and vibrational contributions, we suggest that the non-monotonicity arises from the tetragonal distortion under large biaxial strain. These results may guide the rational engineering of multilayer and core-shell oxide nanomaterials.

8.
Small ; 9(8): 1353-8, 2013 Apr 22.
Article in English | MEDLINE | ID: mdl-23494990

ABSTRACT

A self-limiting growth process based on the interface-controlled reaction of molten boron oxide (B2 O3 ) with ammonia (NH3 ) is demonstrated for the facile and lost-cost synthesis of ultrathin (20-30 nm) crystalline hexagonal boron nitride (h-BN) films over large areas. The as-grown h-BN films are of high quality, being densely continuous, uniform and smooth, and highly transparent over a broad wavelength range.

SELECTION OF CITATIONS
SEARCH DETAIL
...