Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 11(1)2019 01 09.
Article in English | MEDLINE | ID: mdl-30634515

ABSTRACT

Despite significant advances in cancer diagnostics and therapeutics the majority of cancer unfortunately remains incurable, which has led to continued research to better understand its exceptionally diverse biology. As a result of genomic instability, cancer cells typically have elevated proteotoxic stress. Recent appreciation of this functional link between the two secondary hallmarks of cancer: aneuploidy (oxidative stress) and proteotoxic stress, has therefore led to the development of new anticancer therapies targeting this emerging "Achilles heel" of malignancy. This review highlights the importance of managing proteotoxic stress for cancer cell survival and provides an overview of the integral role proteostasis pathways play in the maintenance of protein homeostasis. We further review the efforts undertaken to exploit proteotoxic stress in multiple myeloma (as an example of a hematologic malignancy) and triple negative breast cancer (as an example of a solid tumor), and give examples of: (1) FDA-approved therapies in routine clinical use; and (2) promising therapies currently in clinical trials. Finally, we provide new insights gleaned from the use of emerging technologies to disrupt the protein secretory pathway and repurpose E3 ligases to achieve targeted protein degradation.

2.
Leuk Lymphoma ; 59(3): 542-561, 2018 03.
Article in English | MEDLINE | ID: mdl-28610537

ABSTRACT

Multiple myeloma (MM) is among the most compelling examples of cancer in which research has markedly improved the length and quality of lives of those afflicted. Research efforts have led to 18 newly approved treatments over the last 12 years, including seven in 2015. However, despite significant improvement in overall survival, MM remains incurable as most patients inevitably, yet unpredictably, develop refractory disease. Recent advances in high-throughput 'omics' techniques afford us an unprecedented opportunity to (1) understand drug resistance at the genomic, transcriptomic, and proteomic level; (2) discover novel diagnostic, prognostic, and therapeutic biomarkers; (3) develop novel therapeutic targets and rational drug combinations; and (4) optimize risk-adapted strategies to circumvent drug resistance, thus bringing us closer to a cure for MM. In this review, we provide an overview of 'omics' technologies in MM biomarker and drug discovery, highlighting recent insights into MM drug resistance gleaned from the use of 'omics' techniques. Moving from the bench to bedside, we also highlight future trends in MM, with a focus on the potential use of 'omics' technologies as diagnostic, prognostic, or response/relapse monitoring tools to guide therapeutic decisions anchored upon highly individualized, targeted, durable, and rationally informed combination therapies with curative potential.


Subject(s)
Biomarkers/analysis , Drug Resistance, Neoplasm , Genomics , Metabolomics , Multiple Myeloma/drug therapy , Neoplasm Recurrence, Local/prevention & control , Proteomics , Humans , Neoplasm Recurrence, Local/diagnosis , Prognosis , Salvage Therapy
3.
Front Cardiovasc Med ; 4: 68, 2017.
Article in English | MEDLINE | ID: mdl-29164135

ABSTRACT

Nanoparticle tracking analysis (NTA) can be used to quantitate extracellular vesicles (EVs) in biological samples and is widely considered a useful diagnostic tool to detect disease. However, accurately profiling EVs can be challenging due to their small size and heterogeneity. Here, we aimed to provide a protocol to facilitate high-precision particle quantitation by NTA in plasma, the supernatant of activated purified platelets [the platelet releasate (PR)] and in serum, to increase confidence in NTA particle enumeration. The overall variance and the precision of NTA measurements were quantified by root mean square error and relative standard error. Using a bootstrapping approach, we found that increasing video replicates from 5 s × 60 s to 25 s × 60 s captures led to a reduction in overall variance and a reproducible increase in the precision of NTA particle-concentration quantitation for all three biofluids. We then validated our approach in an extended cohort of 32 healthy donors. Our results indicate that for vesicles sized between 50 and 120 nm, the precision of routine NTA measurements in serum, plasma, and PR can be significantly improved by increasing the number of video replicates captured. Our protocol provides a common platform to statistical compare particle size distribution profiles in the exosomal-vesicle size range across a variety of biofluids and in both healthy donor and patient groups.

4.
Acta Haematol ; 137(2): 106-112, 2017.
Article in English | MEDLINE | ID: mdl-28208145

ABSTRACT

Mantle cell lymphoma (MCL) remains incurable and new treatments are needed, especially in the relapsed/refractory setting. We therefore investigated the effects of carfilzomib, a novel, long-acting, second-generation proteasome inhibitor, in MCL cells. Eight established MCL cell lines and freshly isolated primary MCL cells were treated with carfilzomib. Cell proliferation was assessed by a 3H-thymidine incorporation assay. Cell apoptosis was evaluated by flow cytometry with annexin V and propidium iodide. Electrophoresis mobility shift (EMSA), Western blot, and luciferase assays were used to analyze NF-κB activation and related signaling proteins. Carfilzomib inhibited growth and induced apoptosis in both established MCL cell lines and freshly isolated primary MCL cells in a dose-dependent manner. In contrast, carfilzomib was less toxic to normal peripheral blood mononuclear cells from healthy individuals. The carfilzomib-induced apoptosis of MCL cells occurred in a caspase-dependent manner through both intrinsic and extrinsic caspase pathways. In addition, carfilzomib inhibited constitutive activation of the NF-κB signaling cascade, both in MCL cell lines and primary MCL cells, by completely blocking the phosphorylation of IκBα. Our results demonstrate that carfilzomib can induce growth arrest and apoptosis in MCL cells and that the mechanism may involve the NF-κB signaling pathway.


Subject(s)
Apoptosis/drug effects , Lymphoma, Mantle-Cell/drug therapy , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , Oligopeptides/pharmacology , Signal Transduction/drug effects , Cell Line, Tumor , Humans , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...