Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 123: 105768, 2022 06.
Article in English | MEDLINE | ID: mdl-35378372

ABSTRACT

Cat eye syndrome chromosome region candidate 2 (CECR2) bromodomain is a module of CECR2-containing remodeling factor (CERF), which is a chromatin remodeling complex correlating with transcriptional control and adjustment of chromatin architecture. Potent chemical probes would be beneficial to gain insights into the biochemical and pharmacological functions of CECR2 BRD. Herein, we report the discovery of a series of CECR2 BRD inhibitors with 7H-pyrrolo[2,3-d] pyrimidine scaffold based on molecular docking model of TP-248 and CECR2 BRD. The most potent inhibitor of this series, DC-CBi-22 with IC50 of 8.0 ± 1.4 nM against CECR2 BRD and selectivity over BPTF BRD up to 24.9-fold. The SARs were detailed according to molecular docking. DC-CBi-22 would serve as a useful chemical probe for the study of CECR2.


Subject(s)
Pyrimidines , Transcription Factors , Molecular Docking Simulation , Protein Domains , Pyrimidines/pharmacology , Structure-Activity Relationship , Transcription Factors/chemistry
2.
Bioorg Med Chem ; 52: 116512, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34801827

ABSTRACT

Histone acetylation is one of the most essential parts of epigenetic modification, mediating a variety of complex biological functions. In these procedure, p300/CBP could catalyze the acetylation of lysine 27 on histone 3 (H3K27ac), and had been reported to mediate tumorigenesis and development in a variety of tumors by enhancing chromatin transcription activity. Ovarian cancer, as an extremely malignant tumor, has also been observed to undergo abnormal acetylation of histones. However, whether the treatment of ovarian cancer could be achieved by inhibiting the acetylation activity of p300/CBP on H3K27 has not been well investigated. In this article, we modified the structure of p300/CBP HAT domain inhibitor A-485 and obtained a highly active small molecule known as 13f, which has an IC50 value of 0.49 nM for inhibiting the in vitro enzyme activity of p300, as well as the anti-proliferation IC50 value on ovarian cancer cell line OVCAR-3 was 153 nM. In addition, 13f had strong acetylase family selectivity, good metabolic stability and promising in vivo anti-tumor activity in OVCAR-3 xenograft model. The discovery of 13f revealed a more active chemical entity of the HATs domain of p300/CBP and provided a novel idea for the application of epigenetic inhibitors in the treatment of ovarian cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Ovarian Neoplasms/drug therapy , Oxazoles/pharmacology , Spiro Compounds/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Female , Humans , Molecular Structure , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Oxazoles/chemical synthesis , Oxazoles/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship , p300-CBP Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...