Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Water Res ; 249: 121008, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38096729

ABSTRACT

Phytoremediation, which is commonly carried out through hydroponics and substrate-based strategies, is essential for the effectiveness of nature-based engineered solutions aimed at addressing excess nitrogen in aquatic ecosystems. However, the performance and mechanisms of plants involving nitrogen removal between different strategies need to be deeply understood. Here, this study employed in-situ cultivation coupled with static nitrogen tracing experiments to elucidate the influence of both strategies on plant traits associated with nitrogen removal. The results indicated that removal efficiencies in plants with substrate-based strategies for ammonium nitrogen and nitrate nitrogen were 30.51-71.11 % and 16.82-99.95 %, respectively, which were significantly higher than those with hydroponics strategies (25.98-58.18 % and 7.29-79.19 %, respectively). Similarly, the plant nitrogen uptake rates in the substrate-based strategy also generally showed higher levels compared to hydroponics strategies (P < 0.05). Meanwhile, the microorganisms-mediated nitrous oxide emission rates in the substrate-based strategy during summer (unamended: 0.00-0.58 µg/g/d; potential: 3.35-7.65 µg/g/d) were obviously lower than those in the hydroponics strategy (unamended: 2.23-11.70 µg/g/d; potential: 9.72-43.09 µg/g/d) (P < 0.05). Notably, analysis of similarity tests indicated that the influences of strategy on the above parameters generally surpass the effects attributable to interspecies plant differences, particularly during summer (R > 0, P < 0.05). Based on statistical and metagenomic analyses, this study revealed that these differences were driven by the stabilizing influence of substrate-based strategy on plant roots and enhancing synergistic interplay among biochemical factors within plant-root systems. Even so, phytoremediation strategies did not significantly alter the characteristics of plants with regards to their tendency towards ammonium nitrogen uptake (up to 87.68 %) and dissimilatory nitrate reduction to ammonium as primary biological pathway for nitrogen transformation which accounted for 53.66-96.47 % nitrate removal. In summary, this study suggested that the substrate-based strategy should be a more effective strategy for enhancing the nitrogen removal ability of plants in subtropical river restoration practices.


Subject(s)
Ammonium Compounds , Nitrates , Ecosystem , Biodegradation, Environmental , Rivers , Nitrogen/metabolism , Denitrification
2.
Environ Pollut ; 337: 122619, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37757937

ABSTRACT

To comprehensively understand antibiotic resistant genes (ARGs) profile in the subtropical drinking water river-reservoir system, this study selected Dongzhen river-reservoir system in Mulan Creek as object to investigate the spatial-temporal characteristics of ARGs diversity, bacterial host and resistance mechanism, and to analyze the key environmental factors driving ARGs profile variation. The results indicated that a total of 440 ARGs were detected in the target system, and the ARGs distribution pattern in the reservoir was attributed to autologous evolution or the comprehensive influence of feeding river system. The predominant bacterial host at different sites showed similar variations to dominated ARGs, and Proteobacteria, Actinobacteria and Bacteroidetes harbored most ARGs at phylum level, which showed the highest proportions of 74%, 37% and 35%, respectively. Antibiotic efflux was the primary resistance mechanism in all samples from wet season (45%-60%), yet the samples from dry season exhibited multiple resistance mechanisms, including inactivation (37%-52%), efflux (44%), and target alteration (43%). The total relative abundances of ARGs in the target system ranged from 0.89 × 10-2 to 1.71 × 10-2, and seasonal variation had a more significant influence on ARGs abundance than spatial variation (R = 0.68, P < 0.01). Environmental factors analysis indicated that the concentrations of nitrite nitrogen and total organic carbon were significant factors explaining ARGs number and various resistance mechanism proportions (P < 0.01), accounting for 48.7% and 61.1% of the variation, respectively; ammonia nitrogen concentration, total organic carbon concentration, temperature and pH were the significant influence factors on the relative abundance of ARGs (P < 0.05), with standardized regression weights of 0.700, 1.414, 1.447, and 1.727, respectively. In summary, in the surface water of the target system, ARGs diversity was primarily driven by ARGs horizontal transfer and antibiotics biosynthesis. Nutrients mainly promoted ARGs abundance by providing abundant energy, rather than increasing bacterial reproductive capacity.


Subject(s)
Drinking Water , Genes, Bacterial , Rivers , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Bacteria/genetics , Carbon , Nitrogen
3.
Environ Res ; 237(Pt 2): 116999, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37634690

ABSTRACT

To understand the dynamics of planktonic microbial community and its metabolism processes in subtropical drinking water river-reservoir system with lower man-made pollution loading, this study selected Dongzhen river-reservoir system in Mulan Creek as object to investigate spatial-temporal characteristics of community profile and functional genes involved in biological metabolism, and to analyze the influence of environmental factors. The results indicated that Proteobacteria and Actinobacteria were the most diverse phyla with proportion ranges of 9%-80% in target system, and carbohydrate metabolism (5.76-7.12 × 10-2), amino acid metabolism (5.78-7.21 × 10-2) and energy metabolism (4.07-5.17 × 10-2) were found to be the dominant pathways of biological metabolism. Although there were variations in biological properties both spatially and temporally, seasonal variation had a greater influence on microbial community and biological metabolism, than locational differences. Regarding the role of environmental factors, this study revealed that microbial diversity could be affected by multiple abiotic factors, with total organic carbon, total phosphorus and temperature being more influential (absolute value of standardized regression weights >2.13). Stochastic processes dominated the microbial community assembly (R2 of neutral community model = 0.645), while niche-based processes differences represented by nutrients, temperature and pH level played secondary roles (R > 0.388, P < 0.01). Notably, the synergistic influences among the environmental factors accounted for the higher percentages of community variation (maximum proportion up to 17.6%). Additionally, pH level, temperature, and concentrations of dissolved oxygen, carbon and nitrogen were found to be the significant factors affecting carbon metabolism pathways (P < 0.05), yet only total organic carbon significantly affected on nitrogen transformation (P < 0.05). In summary, the microbial profile in reservoir is not completely dominated by that in feeding river, and planktonic microbial community and its metabolism in subtropical drinking water river-reservoir system are shaped by multiple abiotic and biotic factors with underlying interactions.

4.
Mar Drugs ; 21(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37103358

ABSTRACT

Alkaloids, as one of the largest classes of natural products with diverse structures, are an important source of innovative medicines. Filamentous fungi, especially those derived from the marine environment, are one of the major producers of alkaloids. In this study, three new alkaloids, sclerotioloids A-C (1-3), along with six known analogs (4-9), were obtained under the guidance of the MS/MS-based molecular networking from the marine-derived fungus, Aspergillus sclerotiorum ST0501, collected from the South China Sea. Their chemical structures were elucidated by comprehensive analysis of the spectroscopic data, including 1D and 2D NMR and HRESIMS. Additionally, the configuration of compound 2 was unambiguously determined by X-ray single crystal diffraction, and that of compound 3 was determined by the TDDFT-ECD approach. Sclerotioloid A (1) represents the first example of 2,5-diketopiperazine alkaloid with a rare terminal alkyne. Sclerotioloid B (2) showed the inhibition of NO production induced by lipopolysaccharide (LPS), with an inhibition rate of 28.92% higher than that of dexamethasone (25.87%). These results expanded the library of fungal-derived alkaloids and further prove the potential of marine fungi in the generation of alkaloids with new scaffolds.


Subject(s)
Alkaloids , Tandem Mass Spectrometry , Alkaloids/pharmacology , Alkaloids/chemistry , Fungi/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure
5.
Journal of Geriatric Cardiology ; (12): 716-727, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010200

ABSTRACT

BACKGROUND@#Controversy exists as to the optimal treatment approach for ostial left anterior descending (LAD) or ostial left circumflex artery (LCx) lesions. Drug-coated balloons (DCB) may overcome some of the limitations of drug-eluting stents (DES). Therefore, we investigated the security and feasibility of the DCB policy in patients with ostial LAD or ostial LCx lesions, and compared it with the conventional DES-only strategy.@*METHODS@#We retrospectively enrolled patients with de novo ostial lesions in the LAD or LCx who underwent interventional treatment. They were categorized into two groups based on their treatment approach: the DCB group and the DES group. The treatment strategies in the DCB group involved the use of either DCB-only or hybrid strategies, whereas the DES group utilized crossover or precise stenting techniques. Two-year target lesion revascularization was the primary endpoint, while the rates of major adverse cardiovascular events, cardiac death, target vessel myocardial infarction, and vessel thrombosis were the secondary endpoints. Using propensity score matching, we assembled a cohort with comparable baseline characteristics. To ensure result analysis reliability, we conducted sensitivity analyses, including interaction, and stratified analyses.@*RESULTS@#Among the 397 eligible patients, 6.25% of patients who were planned to undergo DCB underwent DES. A total of 108 patients in each group had comparable propensity scores and were included in the analysis. Two-year target lesion revascularization occurred in 5 patients (4.90%) and 16 patients (16.33%) in the DCB group and the DES group, respectively (odds ratio = 0.264, 95% CI: 0.093-0.752, P = 0.008). Compared with the DES group, the DCB group demonstrated a lower major adverse cardiovascular events rate (7.84% vs. 19.39%, P = 0.017). However, differences with regard to cardiac death, non-periprocedural target vessel myocardial infarction, and definite or probable vessel thrombosis between the groups were non-significant.@*CONCLUSIONS@#The utilization of the DCB approach signifies an innovative and discretionary strategy for managing isolated ostial lesions in the LAD or LCx. Nevertheless, a future randomized trial investigating the feasibility and safety of DCB compared to the DES-only strategy specifically for de novo ostial lesions in the LAD or LCx is highly warranted.

6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-986930

ABSTRACT

Objective: This cross-sectional investigation aimed to determine the incidence, clinical characteristics, prognosis, and related risk factors of olfactory and gustatory dysfunctions related to infection with the SARS-CoV-2 Omicron strain in mainland China. Methods: Data of patients with SARS-CoV-2 from December 28, 2022, to February 21, 2023, were collected through online and offline questionnaires from 45 tertiary hospitals and one center for disease control and prevention in mainland China. The questionnaire included demographic information, previous health history, smoking and alcohol drinking, SARS-CoV-2 vaccination, olfactory and gustatory function before and after infection, other symptoms after infection, as well as the duration and improvement of olfactory and gustatory dysfunction. The self-reported olfactory and gustatory functions of patients were evaluated using the Olfactory VAS scale and Gustatory VAS scale. Results: A total of 35 566 valid questionnaires were obtained, revealing a high incidence of olfactory and taste dysfunctions related to infection with the SARS-CoV-2 Omicron strain (67.75%). Females(χ2=367.013, P<0.001) and young people(χ2=120.210, P<0.001) were more likely to develop these dysfunctions. Gender(OR=1.564, 95%CI: 1.487-1.645), SARS-CoV-2 vaccination status (OR=1.334, 95%CI: 1.164-1.530), oral health status (OR=0.881, 95%CI: 0.839-0.926), smoking history (OR=1.152, 95%CI=1.080-1.229), and drinking history (OR=0.854, 95%CI: 0.785-0.928) were correlated with the occurrence of olfactory and taste dysfunctions related to SARS-CoV-2(above P<0.001). 44.62% (4 391/9 840) of the patients who had not recovered their sense of smell and taste also suffered from nasal congestion, runny nose, and 32.62% (3 210/9 840) suffered from dry mouth and sore throat. The improvement of olfactory and taste functions was correlated with the persistence of accompanying symptoms(χ2=10.873, P=0.001). The average score of olfactory and taste VAS scale was 8.41 and 8.51 respectively before SARS-CoV-2 infection, but decreased to3.69 and 4.29 respectively after SARS-CoV-2 infection, and recovered to 5.83and 6.55 respectively at the time of the survey. The median duration of olfactory and gustatory dysfunctions was 15 days and 12 days, respectively, with 0.5% (121/24 096) of patients experiencing these dysfunctions for more than 28 days. The overall self-reported improvement rate of smell and taste dysfunctions was 59.16% (14 256/24 096). Gender(OR=0.893, 95%CI: 0.839-0.951), SARS-CoV-2 vaccination status (OR=1.334, 95%CI: 1.164-1.530), history of head and facial trauma(OR=1.180, 95%CI: 1.036-1.344, P=0.013), nose (OR=1.104, 95%CI: 1.042-1.171, P=0.001) and oral (OR=1.162, 95%CI: 1.096-1.233) health status, smoking history(OR=0.765, 95%CI: 0.709-0.825), and the persistence of accompanying symptoms (OR=0.359, 95%CI: 0.332-0.388) were correlated with the recovery of olfactory and taste dysfunctions related to SARS-CoV-2 (above P<0.001 except for the indicated values). Conclusion: The incidence of olfactory and taste dysfunctions related to infection with the SARS-CoV-2 Omicron strain is high in mainland China, with females and young people more likely to develop these dysfunctions. Active and effective intervention measures may be required for cases that persist for a long time. The recovery of olfactory and taste functions is influenced by several factors, including gender, SARS-CoV-2 vaccination status, history of head and facial trauma, nasal and oral health status, smoking history, and persistence of accompanying symptoms.


Subject(s)
Female , Humans , Adolescent , SARS-CoV-2 , Smell , COVID-19/complications , Cross-Sectional Studies , COVID-19 Vaccines , Incidence , Olfaction Disorders/etiology , Taste Disorders/etiology , Prognosis
7.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5406-5417, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36471954

ABSTRACT

Cerebral ischemia-reperfusion injury(CIRI) is a complex cascade process and seriously hinders the recovery of patients with acute ischemic stroke, which has become an urgent public health issue to be addressed. Silent information regulators(SIRTs) are a family of nicotinamide adenine dinucleotide(NAD~+)-dependent deacetylases, capable of deacylating the histone and non-histone lysine groups. Accumulating evidence has demonstrated that SIRTs are able to regulate the pathological processes such as oxidative stress, inflammatory response, mitochondrial dysfunction, and programmed cell death of CIRI through post-translational deacetylation, and exert the neuroprotection function. In this study, we reviewed the papers about the role and regulatory mechanisms of SIRTs in the pathological process of CIRI published in the past decade. Further, we summarized the research advance in the prevention and treatment of CIRI with Chinese medicine targeting SIRTs and the related signaling pathways. This review will provide new targets and theoretical support for the clinical application of Chinese medicine in treating CIRI during the occurrence of ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Sirtuins , Humans , Brain Ischemia/enzymology , Brain Ischemia/therapy , Ischemic Stroke/enzymology , Ischemic Stroke/therapy , Medicine, Chinese Traditional , Oxidative Stress , Reperfusion Injury/enzymology , Reperfusion Injury/metabolism , Reperfusion Injury/therapy , Sirtuins/metabolism
8.
J Fungi (Basel) ; 8(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36422039

ABSTRACT

The Metarhizium fungal species are considered the prolific producers of bioactive secondary metabolites with a variety of chemical structures. In this study, the biosynthetic potential of marine-derived fungus Metarhizium sp. P2100 to produce bioactive alkaloids was explored by using the one strain many compounds (OSMAC) strategy. From the rice solid medium (mixed with glucose peptone and yeast broth (GPY)), wheat solid medium (mixed with Czapek) and GPY liquid medium, one rare N-butenone spiroquinazoline alkaloid, N-butenonelapatin A (1), together with nine known compounds (2-10), were isolated and identified. Their structures were elucidated by analysis of the comprehensive spectroscopic data, including 1D and 2D NMR and HRESIMS, and the absolute configuration of 1 was determined by a single-crystal X-ray crystallographic experiment. N-butenonelapatin A (1) represents the first example of N-butenone spiroquinazoline with a rare α, ß-unsaturated ketone side chain in the family of spiroquinazoline alkaloids. Compound 4 displayed antibacterial activity against Vibrio vulnificus MCCC E1758 with a minimum inhibitory concentration (MIC) value of 6.25 µg/mL. Compound 7 exhibited antibacterial activities against three aquatic pathogenic bacteria, including V. vulnificus MCCC E1758, V. rotiferianus MCCC E385 and V. campbellii MCCC E333 with the MIC values of 12.5, 12.5 and 6.25 µg/mL, respectively. Compounds 3 and 6 demonstrated anti-inflammatory activity against NO production induced by lipopolysaccharide (LPS) with the IC50 values of 37.08 and 37.48 µM, respectively. In addition, compound 1 showed weak inhibitory activity against the proliferation of tumor cell lines A-375 and HCT 116. These findings further demonstrated that fungi of the Metarhizium species harbor great potentials in the synthesis of a variety of bioactive alkaloids.

9.
Sci Rep ; 12(1): 16586, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36198740

ABSTRACT

In order to investigate the influence of minor Ru on the electrochemical behaviour and structural characteristics of passive films on the surface of Ti-6Al-4V alloys under various oil and gas exploration conditions, electrochemical techniques, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and corrosion simulation tests were carried out. The results revealed that the oil and gas exploration conditions had a serious impact on the electrochemical behaviour and corrosion resistance of the tested alloys. The passivation film resistance and corrosion potential of the tested titanium alloys were significantly reduced with increasing acidity and temperature. With the addition of minor ruthenium, the potential of the passive film on the Ti-6Al-4V-0.11Ru alloy surface increased because of the high surface potential of the ruthenium element. The contents of metallic ruthenium and tetravalent titanium oxide TiO2 in the surface film of the Ti-6Al-4V-0.11Ru alloy both increased with increasing temperature, which led to increase the thickness, stability, corrosion resistance and repairability of the passive film on the surface of the Ti-6Al-4V-0.11Ru alloy being better than those qualities of Ti-6Al-4V. These results were also confirmed by corrosion simulation tests.

10.
J Fungi (Basel) ; 8(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36294591

ABSTRACT

Aspergillus terreus is well-known for its ability to biosynthesize valuable pharmaceuticals as well as structurally unique secondary metabolites. However, numerous promising cryptic secondary metabolites in this strain regulated by silent gene clusters remain unidentified. In this study, to further explore the secondary metabolite potential of A. terreus, the essential histone deacetylase hdaA gene was deleted in the marine-derived A. terreus RA2905. The results showed that HdaA plays a vital and negative regulatory role in both conidiation and secondary metabolism. Loss of HdaA in A. terreus RA2905 not only resulted in the improvement in butyrolactone production, but also activated the biosynthesis of new azaphilone derivatives. After scaled fermentation, two new azaphilones, asperterilones A and B (1 and 2), were isolated from ΔhdaA mutant. The planar structures of compounds 1 and 2 were undoubtedly characterized by NMR spectroscopy and mass spectrometry analysis. Their absolute configurations were assigned by circular dichroism spectra analysis and proposed biosynthesis pathway. Compounds 1 and 2 displayed moderate anti-Candida activities with the MIC values ranging from 18.0 to 47.9 µM, and compound 1 exhibited significant cytotoxic activity against human breast cancer cell line MDA-MB-231. This study provides novel evidence that hdaA plays essential and global roles in repressing secondary metabolite gene expression in fungi, and its deletion represents an efficient strategy to mine new compounds from A. terreus and other available marine-derived fungi.

11.
J Fungi (Basel) ; 9(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36675849

ABSTRACT

Glycoside compounds have attracted great interest due to their remarkable and multifarious bioactivities. In this study, four hitherto unknown 4-methoxy-ß-D-glucosyl derivatives were obtained and identified from the marine-derived fungus Metarhizium sp. P2100, including three alpha-pyrone glycosides (1-3) and one phenolic glycoside (4). Their planar structures were elucidated by comprehensive spectroscopic analysis, including 1D/2D NMR and HRESIMS. The absolute configurations of 1-3 were determined by a single-crystal X-ray crystallographic experiment, a comparison of the experimental, and a calculated electronic circular dichroism (ECD) spectra, respectively. Compounds 2 and 3 are a pair of rare epimeric pyranoside glycosides at C-7 with a core of aglycone as 2H-pyrone. Compounds 1-4 exhibited weak anti-inflammatory activities. In particular, compounds 1-3 displayed inhibitory activities against α-amylase, showing a potential for the development of a new α-amylase inhibitor for controlling diabetes.

12.
Chinese Journal of Urology ; (12): 690-695, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-957457

ABSTRACT

Objective:To investigate the availability and safety of a domestic disposable digital flexible cystoscope compared with a reusable Olympus digital flexible cystoscope in cystoscopy and removal of double J stent.Methods:From August 2018 to March 2019, patients were enrolled in this prospective, open, multicenter, randomized, parallel positive controlled clinical trial study, which were from department of Urology in Renmin Hospital of Wuhan University, the First Affiliated Hospital of Xiamen University and the First Affiliated Hospital of Guangzhou Medical University. The experimental group and control group were assigned into a 1∶1 ratio by random table method. Inclusion criteria included age≥18 years and have indications for cystoscopy or removal of double J stent. Exclusion criteria included patients having acute genitourinary tract infection, having tuberculous bladder contracture, bladder capacity less than 50ml, having urethrostenosis, female menstrual period, pregnancy and lactation, having difficulty for lithotomy position, having serious cardio-cerebrovascular disease and liver or kidney dysfunction. A domestic disposable digital flexible cystoscope was adopted in the experimental group, whereas a reusable Olympus digital flexible cystoscope was used in the control group. Acceptability of image was defined as primary availability indicator, while success rate of working and performance score were defined as secondary availability indicators and mean operating time was calculated for cystoscopy only and cystoscopy plus removal of double J stent respectively, yet rate of adverse event as well as rate of equipment defects were sorted as safety indicators.Results:A total of 188 cases which were listed in per protocol set completed the clinical trial study successfully. There were 95 cases in the experimental group and 93 cases in the control group. Acceptability of image was 93.68%(89/95) and 96.77%(90/93) respectively in two groups( P=0.52). Success rate of working was 100.00%(95/95) and 98.92%(92/93) respectively in two groups ( P=0.49). Performance score was 14.41±0.93 and 14.56±0.84 respectively in two groups ( P=0.23). Mean operating time (MOT) only for cystoscopy was (15.3±2.6) min and (15.4±3.3)min respectively in two groups ( P=0.93), while MOT for cystoscopy plus removal of double J stent was (21.0±3.2) min and (21.7±3.9) min respectively in two groups ( P=0.69). Rate of adverse event was 8.42%(8/95) and 9.68%(9/93) respectively in two groups( P=0.76). There was no equipment defects in both groups. Conclusions:There is no statistical difference in acceptability of image, success rate of working, performance score, mean operating time for cystoscopy or removal of double J stent, rate of adverse events and rate of equipment defects. A domestic disposable digital flexible cystoscope has shown non-inferiority in the availability and safety compared with a reusable Olympus digital flexible cystoscope.

13.
Inorg Chem ; 60(8): 5829-5839, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33779146

ABSTRACT

The establishment of a heterojunction is a crucial strategy to design highly effective nonnoble metal nanocatalysts for the photocatalytic nitrogen reduction reaction (PNRR). Heteropoly blues (r-POMs) can act as electron-transfer mediators in PNRR, but its agglomeration limits the further promotion of PNRR productivity. In this work, we construct a protonation-modified surface of N-vacancy g-C3N4 (HV-C3N4), achieving the high dispersion of r-POMs via the surface modification strategy. Enlightened by the synergy effect of the nitrogenase, r-POMs were anchored onto HV-C3N4 nanosheets through an electrostatic self-assembly method for preparing r-POMs-based protonation-defective graphitic carbonitride (HV-C3N4/r-POMs). As an electron donor, r-PW12 can match with the energy level of HV-C3N4 to build a heterojunction. The electron redistribution of the heterojunction facilitates the optimization of the electronic structure for enhancing the performance of PNRR. HV-C3N4/r-PW12 exhibits the best PNRR efficiency of 171.4 µmol L-1 h-1, which is boosted by 94.39% (HV-C3N4) and 86.98% (r-PW12). The isotope 15NH4+ experiment proves that ammonia is derived from N2, not carbon nitride. This study opens up a crucial view to achieve the high dispersion of r-POMs nanoparticles and develop high-efficiency nonnoble metal photocatalysts for the PNRR.

14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-879032

ABSTRACT

The innovation and patent layout of traditional Chinese medicine compounds reflects the innovation level of the traditio-nal Chinese medicine industry to a certain extent. Lianhua Qingwen Formula was taken as an example to analyze the innovation and patent layout of traditional Chinese medicine compounds. The study first proposed an innovative technology system for traditional Chinese medicine compounds, and then analyzed the advantages and disadvantages of Lianhua Qingwen Formula in innovation and patent layout based on 56 patents and other relevant patents. The analysis results showed that Lianhua Qingwen Formula had the following characte-ristics in terms of patent layout. In terms of innovation technical route, the patented technical route of Lianhua Qingwen Formula was mainly based on the composition and preparation of granules as the first choice, followed by corresponding process improvements, new uses, and detection methods as the main improvement routes. In terms of the corresponding patent layout, the basic patent protection scope of Lianhua Qingwen Formula completely covered marketed drugs, and then took new functions as the main layout strategy for subsequent patent applications. With the advancement of modern technical means, the preparation process and testing methods have been optimized continuously. At the same time, the international patent layout was given the priority in domestic patent application. Based on the above characteristics, the study gave suggestions for follow-up innovation and patent work for Lianhua Qingwen Formula, so as to provide enlightenment for other traditional Chinese medicine companies in exploring original innovation of traditional Chinese medicine compounds, improving innovative methods, and enhancing the ability of patent layout of innovative achievements.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Research Design , Technology
15.
Molecules ; 25(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867374

ABSTRACT

Chemical epigenetic modification on a marine-derived fungus Aspergillus terreus RA2905 using a histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), resulted in a significantly changed metabolic profile. A chemical investigation of its ethyl acetate (EtOAc) extract led to the isolation of a racemate of benzyl furanone racemate (±)-1, which further separated chirally as a pair of new enantiomers, (+)- and (-)-asperfuranone (1), together with two new benzyl pyrones, asperpyranones A (2) and B (3). Their structures were elucidated by analysis of the comprehensive spectroscopic data, including one-dimensional (1D) and two-dimensional (2D) NMR, and HRESIMS. The absolute configurations were determined by electronic circular dichroism (ECD) calculation and single-crystal X-ray crystallographic experiment. The structures with benzyl furanone or benzyl pyrone skeletons were discovered from natural products for the first time. Compounds (±)-1, (+)-1, (-)-1, and 2 displayed the antifungal activities against Candida albicans with MIC values of 32, 16, 64, and 64 µg/mL and PTP1B inhibitory activities with the IC50 values of 45.79, 17.32, 35.50, and 42.32 µM, respectively. Compound 2 exhibited antibacterial activity against Pseudomonas aeruginosa with the MIC value of 32 µg/mL.


Subject(s)
Anti-Bacterial Agents , Aspergillus/chemistry , Candida albicans/drug effects , Epigenesis, Genetic/drug effects , Pseudomonas aeruginosa/drug effects , Pyrones , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Molecular Structure , Pyrones/isolation & purification , Pyrones/pharmacology
16.
Yonsei Med J ; 61(5): 438-440, 2020 May.
Article in English | MEDLINE | ID: mdl-32390368

ABSTRACT

COVID-19 not only affects the physical health of Chinese people, but also their psychological health. This article mainly summarized the causes, clinical manifestations and preventive measures of COVID-19 impact on psychology of Chinese people, and presented two representative cases at the same time.


Subject(s)
Coronavirus Infections/psychology , Mental Disorders/virology , Pneumonia, Viral/psychology , Asian People , Betacoronavirus/isolation & purification , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Humans , Mental Disorders/epidemiology , Mental Disorders/prevention & control , Mental Disorders/psychology , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Social Environment
17.
J Nanosci Nanotechnol ; 20(9): 5636-5641, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32331149

ABSTRACT

The novel C/Fe-FeVO4 composite photocatalyst were synthesized by using a two-step hydrothermal synthesis method. Through a detailed exploration on the chemical and phisical properties by some spectroscopic and analytical techniques, the as-prepared C/Fe-FeVO4 exhibted a nanosheet and meso porosity structure. Accordingly, we further utilized this C/Fe-FeVO4 composite as a photocatalist for degradating the notorious ciprofloxacin (CIP) under simulated solar light (SSL) irradiation. Due to its outstanding catalytic properties, the C/Fe-FeVO4 exhibited superior photocatalytic activity. The possible photocatalytic mechanism has been discussed.


Subject(s)
Ciprofloxacin , Nanocomposites , Catalysis , Surface-Active Agents
18.
Mar Drugs ; 18(3)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32110865

ABSTRACT

Aspergillus terreus has been reported to produce many secondary metabolites that exhibit potential bioactivities, such as antibiotic, hypoglycemic, and lipid-lowering activities. In the present study, two new thiodiketopiperazines, emestrins L (1) and M (2), together with five known analogues (3-7), and five known dihydroisocoumarins (8-12), were obtained from the marine-derived fungus Aspergillus terreus RA2905. The structures of the new compounds were elucidated by analysis of the comprehensive spectroscopic data, including high-resolution electrospray ionization mass spectrometry (HRESIMS), one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR), and electronic circular dichroism (ECD) data. This is the first time that the spectroscopic data of compounds 3, 8, and 9 have been reported. Compound 3 displayed antibacterial activity against Pseudomonas aeruginosa (minimum inhibitory concentration (MIC) = 32 µg/mL) and antifungal activity against Candida albicans (MIC = 32 µg/mL). In addition, compound 3 exhibited an inhibitory effect on protein tyrosine phosphatase 1 B (PTP1B), an important hypoglycemic target, with an inhibitory concentration (IC)50 value of 12.25 µM.


Subject(s)
Anti-Bacterial Agents/pharmacology , Aspergillus/chemistry , Animals , Candida albicans/drug effects , Coumarins/chemistry , Microbial Sensitivity Tests , Oceans and Seas , Piperazines/chemistry , Pseudomonas aeruginosa/drug effects
19.
Front Microbiol ; 11: 85, 2020.
Article in English | MEDLINE | ID: mdl-32082294

ABSTRACT

Epigenetic agents, histone deacetylase inhibitor (SAHA) and DNA methyltransferase inhibitor (5-Aza), were added to Czapek-Dox medium to trigger the chemical diversity of marine-derived fungus Aspergillus versicolor XS-20090066. By HPLC and 1H NMR analysis, the diversity of fungal secondary metabolites was significantly increased compared with the control. With the aid of MS/MS-based molecular networking, two new nucleoside derivatives, kipukasins K (1) and L (2) were obtained. Meanwhile, the yields of four known nucleoside derivatives were significantly enhanced. In addition, one new bisabolane sesquiterpene, aspergillusene E (7), along with ten known derivatives were also isolated. The structures were elucidated by comprehensive spectroscopic methods of NMR and HRESIMS analysis. Compounds 1 and 7 displayed antibacterial activities against Staphylococcus epidermidis and Staphylococcus aureus with the MIC values of 8-16 µg/mL. Our study revealed that the fungus A. versicolor XS-20090066 has been effectively induced by chemical epigenetic manipulation with a combination of SAHA and 5-Aza to produce new metabolites.

20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-828049

ABSTRACT

Polysaccharide from Ganoderma applanatum has the activities of anti-tumor and enhancing immune function. There were no reports on antitumor effect of its intratumoral injection. In this study, the polysaccharide was extracted from G. applanatum by water extraction and alcohol precipitation, and purified by ceramic membrane after removing protein by Sevage method. The total polysaccharide content from G. applanatum(PGA)was about 63%. The combination of PGA and paclitaxel showed synergistic effect on cytotoxicity of 4 T1 cells at lower concentrations in vitro. In addition, the growth curve of 4 T1 cells showed that PGA could retard the growth of 4 T1 cells gradually. The PGA thermosensitive gel(PGA-TG)was prepared by using poloxamer 188 and 407. The gel temperature was 36 ℃, and the PGA-TG could effectively slow down the release rate of PGA in vitro. 4 T1 breast cancer-bearing mice were used as a model to evaluate the therapeutic effect of intratumoral injection of PGA combined with tail vein injection of nanoparticle albumin-bound paclitaxel(nab-PTX). In high and low dose PGA groups, each mice was given with 2.25, 1.125 mg PGA respectively, twice in total, and the dosage of paclitaxel was 15 mg·kg~(-1), once every 3 days, for a total of five times. The tumor inhibition rate was 29.65% in the high dose PGA-TG group, 58.58% in the nab-PTX group, 63.37% in low dose PGA-TG combined with nab-PTX group, and 68.10% in high dose PGA-TG combined with nab-PTX group respectively. The inhibitory effect in high dose PGA-TG group combined with nab-PTX on tumors was significantly higher than that in nab-PTX group(P<0.05). The results showed that paclitaxel therapy combined with intratumoral injection of PGA-TG could improve the therapeutic effect for 4 T1 mice and reduce the side effects of chemotherapy.


Subject(s)
Animals , Mice , Breast Neoplasms , Cell Line, Tumor , Ganoderma , Neoplasms , Paclitaxel , Poloxamer , Polysaccharides
SELECTION OF CITATIONS
SEARCH DETAIL
...