Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016476

ABSTRACT

ObjectiveTo study the changing characteristics of secondary metabolic compounds accumulated in Dendrobium nobile stems at different growth years, a simulated wild stone plant, in order to provide a theoretical basis for rational planning of the harvesting period of D. nobile. MethodUltra-high performance liquid chromatography-mass spectrometry(UPLC-MS/MS) was used to detect and analyze the secondary metabolites in the stems of 1-year-old, 2-year-old, and 3-year-old D. nobile. The mass spectrometry data were processed using Analyst 1.6.3 software, and all samples were subjected to principal component analysis(PCA), cluster heat map analysis, partial least squares-discriminant analysis(PLS-DA), and differential secondary metabolites were screened based on variable importance in projection(VIP) values>1, fold change(FC)≥2 and FC≤0.5. Then differential secondary metabolites were identified based on relative molecular weight, fragmentation ions and mass spectrometry database, and enriched pathways were identified based on the Kyoto Encyclopedia of Genes and Genomes(KEGG) database. ResultA total of 1 317 secondary metabolites were identified in the stems of D. nobile at three growth stages, with flavonoids, phenolic acids, alkaloids and terpenoids accounting for 76.55% of the total. Compared with the 1-year-old stems of D. nobile, 289 differential secondary metabolites were identified in the 2-year-old stems, of which 255 were up-regulated and 34 were down-regulated, 682 differential secondary metabolites were identified in the 3-year-old stems, of which 502 were up-regulated and 180 were down-regulated. Compared to the 2-year-old stems, the 3-year-old stems had 602 differential secondary metabolites, with 405 up-regulated and 197 down-regulated. As the growth stage of D. nobile increased, the top 10 up-regulated differential metabolites mainly included flavonoids, phenolic acids, phenylpropanoids and terpenoids, such as kaempferol derivatives, asperulosidic acid, apigenin derivatives, chrysoeriol derivatives, isorhamnetin derivatives, taxifolin derivatives, quercetin derivatives. KEGG enrichment analysis showed significant enrichment of secondary metabolites in the flavonoid biosynthesis, flavone, and flavonol biosynthesis, secondary metabolite biosynthesis, and phenylpropanoid biosynthesis pathways with the increase of growth years. ConclusionWith the increase of the growth years, the levels of secondary metabolites such as flavonoids, phenolic acids, phenylpropanoids and terpenoids in the wild-grown D. nobile have been significantly enhanced. In practical production, grading based on different growth years can be carried out to improve the medicinal and economic values of D. nobile.

2.
Front Pharmacol ; 14: 1125255, 2023.
Article in English | MEDLINE | ID: mdl-36895949

ABSTRACT

LY01005 is an investigational new drug product of goserelin acetate which is formulated as extended-release microspheres for intramuscular injection. To support the proposed clinical trials and marketing application of LY01005, pharmacodynamics, pharmacokinetics and toxicity studies were performed in rats. In the pharmacological study in rats, LY01005 induced an initial supra-physiological level increase of testosterone at 24 h post-dosing which then rapidly fell to castration level. The potency of LY01005 was comparable to the comparator Zoladex® but its effect lasted longer and more stable. A single-dose pharmacokinetics study in rats demonstrated that the Cmax and AUClast of LY01005 increased in a dose-proportional manner in the range of 0.45-1.80 mg/kg and the relative bioavailability was 101.0% between LY01005 and Zoladex®. In the toxicity study, almost all of the positive findings of LY01005 in rats including the changes in hormones (follicle-stimulating hormone, luteinizing hormone, testosterone, progestin) and in reproductive system (uterus, ovary, vagina, cervix uteri, mammary gland, testis, epididymis and prostate) were related to the direct pharmacological effects of goserelin. Mild histopathological changes in foreign body removal reaction induced by excipient were also observed. In conclusion, LY01005 displayed a sustained-release profile of goserelin, and exerted a continuous efficacy in vivo in animal models, which had a comparable potency but with a more sustained effect than that of Zoladex®. The safety profile of LY01005 was largely the same with Zoladex®. These results strongly support the planned LY01005 clinical trials.

3.
Eur J Pharmacol ; 936: 175383, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36347321

ABSTRACT

LY01008 was a biosimilar of Avastin® developed by Shandong Boan Biotechnology. To support the clinical trial and marketing application of LY01008 as a biosimilar, a series of non-clinical pharmacodynamics (PD), pharmacokinetics (PK), and toxicological studies have been conducted. The PD study results showed that LY01008 had similar pharmacodynamic effects with Avastin in VEGF (vascular endothelial growth factor) binding activity, inhibitory effect on angiogenesis and vascular permeability, and anti-tumor activities in nude mouse models alone or combined with chemotherapeutic agents. PK study showed that LY01008 had similar PK parameters with Avastin at the same doses, and the relative bioavailability of LY01008 was 111.4%. The maximum tolerated dose of LY01008 in the single-dose toxicity study of cynomolgus monkeys was greater than 258 mg/kg. LY01008 had no effects on central nervous system, cardiovascular system and respiratory system in cynomolgus monkeys. LY01008 had no hemolytic effect in vitro and no local irritation in cynomolgus monkeys. The immunogenicity of LY01008 was no higher than that of Avastin in cynomolgus monkeys. In the one-month multiple-dose toxicity study in cynomolgus monkeys, the toxicokinetics profiles of LY01008 was similar with Avastin, the characteristics of the toxic reactions were the same and the extent was similar between LY01008 and Avastin, and no new toxic reactions were observed on LY01008. In conclusion, LY01008 had a good safety profile, and was biosimilar with Avastin in the comparative studies of pharmacodynamics, pharmacokinetics, toxicokinetics and toxicology, which supported the clinical trial and marketing application of LY01008 as a biosimilar of Avastin.


Subject(s)
Biosimilar Pharmaceuticals , Animals , Mice , Bevacizumab/toxicity , Biosimilar Pharmaceuticals/toxicity , Macaca fascicularis , Vascular Endothelial Growth Factor A , Biological Availability , Mice, Nude
4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-586865

ABSTRACT

A novel method for quickly cloning genes with multiple DNA fragments--one step cloning technique using isoschizomer-heterotail restriction endonuclease (IHRE) is described. Up to six DNA segments are ligated by using only one restriction endonuclease in this method. Comparing with routine method,it is simple, fast, economical and generates products with higher purity and achievement. Light chain of human enterokinase, DNA multi-epitope vaccine to HSV2 have been designed and successfully constructed via this method.

SELECTION OF CITATIONS
SEARCH DETAIL
...