Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Chinese Medical Journal ; (24): 799-806, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-980841

ABSTRACT

BACKGROUND@#The hepatitis B virus (HBV) vaccine has been efficiently used for decades. However, hepatocellular carcinoma caused by HBV is still prevalent globally. We previously reported that interferon (IFN)-induced tripartite motif-containing 25 (TRIM25) inhibited HBV replication by increasing the IFN expression, and this study aimed to further clarify the anti-HBV mechanism of TRIM25.@*METHODS@#The TRIM25-mediated degradation of hepatitis B virus X (HBx) protein was determined by detecting the expression of HBx in TRIM25-overexpressed or knocked-out HepG2 or HepG2-NTCP cells via Western blotting. Co-immunoprecipitation was performed to confirm the interaction between TRIM25 and HBx, and colocalization of TRIM25 and HBx was identified via immunofluorescence; HBV e-antigen and HBV surface antigen were qualified by using an enzyme-linked immunosorbent assay (ELISA) kit from Kehua Biotech. TRIM25 mRNA, pregenomic RNA (pgRNA), and HBV DNA were detected by quantitative real-time polymerase chain reaction. The retinoic acid-inducible gene I (RIG-I) and pgRNA interaction was verified by RNA-binding protein immunoprecipitation assay.@*RESULTS@#We found that TRIM25 promoted HBx degradation, and confirmed that TRIM25 could enhance the K90-site ubiquitination of HBx as well as promote HBx degradation by the proteasome pathway. Interestingly, apart from the Really Interesting New Gene (RING) domain, the SPRY domain of TRIM25 was also indispensable for HBx degradation. In addition, we found that the expression of TRIM25 increased the recognition of HBV pgRNA by interacting with RIG-I, which further increased the IFN production, and SPRY, but not the RING domain is critical in this process.@*CONCLUSIONS@#The study found that TRIM25 interacted with HBx and promoted HBx-K90-site ubiquitination, which led to HBx degradation. On the other hand, TRIM25 may function as an adaptor, which enhanced the recognition of pgRNA by RIG-I, thereby further promoting IFN production. Our study can contribute to a better understanding of host-virus interaction.


Subject(s)
Humans , Hepatitis B virus , DEAD Box Protein 58/metabolism , RNA , Liver Neoplasms , Virus Replication , Tripartite Motif Proteins/genetics , Transcription Factors , Ubiquitin-Protein Ligases/genetics
2.
Preprint in English | bioRxiv | ID: ppbiorxiv-431755

ABSTRACT

The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the ongoing global pandemic of COVID-19, may trigger immunosuppression in the early stage and a cytokine storm in the late stage of infection, however, the underlying mechanisms are not well understood. Here we demonstrated that the SARS-CoV-2 nucleocapsid (N) protein dually regulated innate immune responses, i.e., the low-dose N protein suppressed type I interferon (IFN-I) signaling and inflammatory cytokines, whereas high-dose N protein promoted IFN-I signaling and inflammatory cytokines. Mechanistically, the SARS-CoV-2 N protein interacted with the tripartite motif protein 25 (TRIM25), thereby dually regulating the phosphorylation and nuclear translocation of IRF3, STAT1 and STAT2. Additionally, low-dose N protein combined with TRIM25 could suppress retinoic acid-inducible gene I (RIG-I) ubiquitination and activation. Our findings revealed a regulatory mechanism of innate immune responses by the SARS-CoV-2 N protein, which would contribute to understanding the pathogenesis of SARS-CoV-2 and other SARS-like coronaviruses, and development of more effective strategies for controlling COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...