Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Pathogens ; 12(11)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38003788

ABSTRACT

Antibiotic resistance has become more and more widespread over the recent decades, becoming a major global health problem and causing colistin to be increasingly used as an antibiotic of last resort. Acinetobacter baumannii, an opportunistic pathogen that has rapidly evolved into a superbug exhibiting multidrug-resistant phenotypes, is responsible for a large number of hospital infection outbreaks. With the intensive use of colistin, A. baumannii resistance to colistin has been found to increase significantly. In previous work, we identified a deflazacort derivative, PYED-1 (pregnadiene-11-hydroxy-16,17-epoxy-3,20-dione-1), which exhibits either direct-acting or synergistic activity against Gram-positive and Gram-negative species and Candida spp., including A. baumannii. The aim of this study was to evaluate the antibacterial activity of PYED-1 in combination with colistin against both A. baumannii planktonic and sessile cells. Furthermore, the cytotoxicity of PYED-1 with and without colistin was assessed. Our results show that PYED-1 and colistin can act synergistically to produce a strong antimicrobial effect against multidrug-resistant populations of A. baumannii. Interestingly, our data reveal that PYED-1 is able to restore the efficacy of colistin against all colistin-resistant A. baumannii isolates. This drug combination could achieve a much stronger antimicrobial effect than colistin while using a much smaller dosage of the drugs, additionally eliminating the toxicity and resistance issues associated with the use of colistin.

2.
J Med Chem ; 66(3): 1790-1808, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36696678

ABSTRACT

Sanfilippo syndrome comprises a group of four genetic diseases due to the lack or decreased activity of enzymes involved in heparan sulfate (HS) catabolism. HS accumulation in lysosomes and other cellular compartments results in tissue and organ dysfunctions, leading to a wide range of clinical symptoms including severe neurodegeneration. To date, no approved treatments for Sanfilippo disease exist. Here, we report the ability of N-substituted l-iminosugars to significantly reduce substrate storage and lysosomal dysfunctions in Sanfilippo fibroblasts and in a neuronal cellular model of Sanfilippo B subtype. Particularly, we found that they increase the levels of defective α-N-acetylglucosaminidase and correct its proper sorting toward the lysosomal compartment. Furthermore, l-iminosugars reduce HS accumulation by downregulating protein levels of exostosin glycosyltransferases. These results highlight an interesting pharmacological potential of these glycomimetics in Sanfilippo syndrome, paving the way for the development of novel therapeutic approaches for the treatment of such incurable disease.


Subject(s)
Mucopolysaccharidosis III , Humans , Mucopolysaccharidosis III/drug therapy , Mucopolysaccharidosis III/metabolism , Heparitin Sulfate/metabolism , Lysosomes/metabolism , Fibroblasts/metabolism , Neurons/metabolism
3.
Eur J Med Chem ; 241: 114618, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35933787

ABSTRACT

Herein we report the synthesis, conformational analysis and the evaluation of the antiviral activity of six-membered nucleoside analogues having a piperidine ring as the preorganized (deoxy)ribose bioisostere. Mutagenic nucleobase-containing nucleosides 1 and 2 were obtained by appropriate manipulation of the well-known glycomimetic agent deoxynojirimycin as easily accessible starting material. In vitro assays revealed activity of 5-iododeoxyuridine analogue 1 against all DNA viruses tested. As suggested by DFT analysis and pH-dependent NMR experiments, antiviral activity was correlated to the biomimetic character of the piperidine ring, as it is able to resemble the deoxyribose conformations adopted by natural nucleosides when interacting with viral enzymes.


Subject(s)
Antiviral Agents , Nucleosides , Antiviral Agents/chemistry , Biomimetics , Molecular Conformation , Nucleosides/chemistry , Piperidines
4.
Dalton Trans ; 51(18): 7294-7304, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35482032

ABSTRACT

The catalytic and biological properties of dirhodium tetracarboxylates ([Rh2(µ-O2CR)4L2], L = axial ligand and R = CH3-, CH3CH2-, etc.) largely depend on the nature of bridging carboxylate equatorial µ-O2CR ligands, which can be easily exchanged by solvent molecules when R is CF3 (i.e. µ-O2CR is trifluoroacetate, tfa). Here, we prepared the [Rh2(OAc)(tfa)3] compound and investigated its interaction with bovine pancreatic ribonuclease and lysozyme under the same conditions used to study the reactivity of these proteins with [Rh2(OAc)4] and [cis-Rh2(OAc)2(tfa)2]. UV-vis absorption spectroscopy and 19F nuclear magnetic resonance studies indicate that [Rh2(OAc)(tfa)3] rapidly loses tfa ligands and interacts with the proteins. Crystallographic data demonstrate that the reaction of [Rh2(OAc)(tfa)3] with proteins can lead to products that are significantly different when compared to those obtained with [Rh2(OAc)4] and [cis-Rh2(OAc)2(tfa)2]: the dirhodium centre can bind the side chain of His residues at both axial and equatorial sites, at variance with what is found in the case of [Rh2(OAc)4] and [cis-Rh2(OAc)2(tfa)2]. These data indicate that the hydrolysis of dirhodium tetracarboxylates plays a significant role in defining their reaction with proteins allowing the formation of unexpected reaction products. These results suggest that [cis-Rh2(OAc)2(tfa)2] and [Rh2(OAc)(tfa)3] can be used to obtain different dirhodium/peptide and dirhodium/protein adducts with distinct catalytic properties and can explain the different cytotoxicity exhibited by tfa-containing dirhodium tetracarboxylates.


Subject(s)
Fluorine , Organometallic Compounds , Animals , Cattle , Ligands , Models, Molecular , Organometallic Compounds/chemistry
5.
Dalton Trans ; 51(9): 3695-3705, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35166290

ABSTRACT

Dirhodium complexes of general formula [Rh2(O2CR)4]L2 are a well-known class of bimetallic compounds that are used as efficient catalysts for a variety of reactions and have been shown to be potent antibacterial and anticancer agents. The catalytic and biological properties of these complexes largely depend on the nature of the bridging carboxylate ligands. Trifluoroacetate (tfa)-containing dirhodium compounds have been used to build artificial metalloenzymes upon reaction with peptides and have been shown to be more cytotoxic than dirhodium tetraacetate. However, there is no structural information on the interaction between these compounds and proteins. Here, cis-Rh2(µ-O2CCH3)2(µ-O2CCF3)2 ([cis-Rh2(OAc)2(tfa)2]) has been synthesized and its reaction with bovine pancreatic ribonuclease (RNase A) and hen egg white lysozyme (HEWL) was analyzed using a combination of different techniques, including Fluorine-19 nuclear magnetic resonance spectroscopy and macromolecular X-ray crystallography, with the aim to unveil the differences in the reactivity of tfa-containing dihrodium complexes with proteins when compared to [Rh2(OAc)4]. [cis-Rh2(OAc)2(tfa)2] and [Rh2(OAc)4] bind the N atoms of His side chains of RNase A at the axial position; however the fluorine-containing compound rapidly loses its tfa ligands, while [Rh2(OAc)4] can retain the acetate ligands upon protein binding. The reactivity of [cis-Rh2(OAc)2(tfa)2] with HEWL is slightly distinct when compared to that of [Rh2(OAc)4] under the same experimental conditions; however, both [cis-Rh2(OAc)2(tfa)2] and [Rh2(OAc)4] degrade when soaked within HEWL crystals. These results provide a structural-based guide for the design of new heterogenous chiral dirhodium/peptide and dirhodium/protein adducts with application in the fields of organic synthesis and asymmetric catalysis.


Subject(s)
Organometallic Compounds
6.
Antibiotics (Basel) ; 10(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34827334

ABSTRACT

Invasive Candida infections have become a global public health problem due to the increase of Candida species resistant against antifungal therapeutics. The glucocorticoid PYED-1 (pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1) has antimicrobial activity against various bacterial taxa. Consequently, it might be considered for the treatment of Candida infections. The antifungal activity of PYED-1 was evaluated against several fungal strains that were representative of the five species that causes the majority of Candida infections-namely, Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis and Candida krusei. PYED-1 exhibited a weak antifungal activity and a fungistatic effect on all five Candida species. On the other hand, PYED-1 exhibited a good anti-biofilm activity, and was able to eradicate the preformed biofilms of all Candida species analyzed. Moreover, PYED-1 inhibited germ tube and hyphae formation of C. albicans and reduced adhesion of C. albicans to abiotic surfaces by up to 30%.

7.
Molecules ; 26(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809603

ABSTRACT

The de novo synthesis of piperidine nucleosides from our homologating agent 5,6-dihydro-1,4-dithiin is herein reported. The structure and conformation of nucleosides were conceived to faithfully resemble the well-known nucleoside drugs Immucillins H and A in their bioactive conformation. NMR analysis of the synthesized compounds confirmed that they adopt an iminosugar conformation bearing the nucleobases and the hydroxyl groups in the appropriate orientation.


Subject(s)
Adenine/analogs & derivatives , Adenosine/analogs & derivatives , Nucleosides/chemistry , Piperidines/chemistry , Purine Nucleosides/chemistry , Pyrimidinones/chemistry , Pyrrolidines/chemistry , Adenine/chemistry , Adenosine/chemistry , Magnetic Resonance Spectroscopy/methods , Molecular Conformation , Structure-Activity Relationship
8.
Mar Drugs ; 18(11)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228211

ABSTRACT

In the effort to improve the antimicrobial activity of iminosugars, we report the synthesis of lipophilic iminosugars 10a-b and 11a-b based on the one-pot conjugation of both enantiomeric forms of N-butyldeoxynojirimycin (NBDNJ) and N-nonyloxypentyldeoxynojirimycin (NPDNJ) with cholesterol and a succinic acid model linker. The conjugation reaction was tuned using the established PS-TPP/I2/ImH activating system, which provided the desired compounds in high yields (94-96%) by a one-pot procedure. The substantial increase in the lipophilicity of 10a-b and 11a-b is supposed to improve internalization within the bacterial cell, thereby potentially leading to enhanced antimicrobial properties. However, assays are currently hampered by solubility problems; therefore, alternative administration strategies will need to be devised.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Imino Sugars/chemical synthesis , Imino Sugars/pharmacology , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Structure , Staphylococcus aureus/growth & development , Structure-Activity Relationship
9.
Antibiotics (Basel) ; 9(6)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604791

ABSTRACT

Staphylococcus aureus is one of the major causes of hospital- and community-associated bacterial infections throughout the world, which are difficult to treat due to the rising number of drug-resistant strains. New molecules displaying potent activity against this bacterium are urgently needed. In this study, d- and l-deoxynojirimycin (DNJ) and a small library of their N-alkyl derivatives were screened against S. aureus ATCC 29213, with the aim to identify novel candidates with inhibitory potential. Among them, N-nonyloxypentyl-l-DNJ (l-NPDNJ) proved to be the most active compound against S. aureus ATCC 29213 and its clinical isolates, with the minimum inhibitory concentration (MIC) value of 128 µg/mL. l-NPDNJ also displayed an additive effect with gentamicin and oxacillin against the gentamicin- and methicillin-resistant S. aureus isolate 00717. Sub-MIC values of l-NPDNJ affected S. aureus biofilm development in a dose-dependent manner, inducing a strong reduction in biofilm biomass. Moreover, real-time reverse transcriptase PCR analysis revealed that l-NPDNJ effectively inhibited at sub-MIC values the transcription of the spa, hla, hlb and sea virulence genes, as well as the agrA and saeR response regulator genes.

10.
Chemistry ; 26(43): 9589-9597, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32363791

ABSTRACT

The replacement of one or more nucleotide residues in the potent α-thrombin-binding aptamer NU172 with hexitol-based nucleotides has been devised to study the effect of these substitutions on the physicochemical and functional properties of the anticoagulant agent. The incorporation of single hexitol nucleotides at the T9 and G18 positions of NU172 substantially retained the physicochemical features of the parent oligonucleotide, as a result of the biomimetic properties of the hexitol backbone. Importantly, the NU172-TH 9 mutant exhibited a higher binding affinity toward human α-thrombin than the native aptamer and an improved stability even after 24 h in 90 % human serum, with a significant increase in the estimated half-life. The anticoagulant activity of the modified oligonucleotide was also found to be slightly preferable to NU172. Overall, these results confirm the potential of hexitol nucleotides as biomimetic agents, while laying the foundations for the development of NU172-inspired α-thrombin-binding aptamers.


Subject(s)
Anticoagulants/chemistry , Aptamers, Nucleotide/chemistry , Sugar Alcohols/chemistry , Thrombin/chemistry , Humans , Structure-Activity Relationship
11.
Antibiotics (Basel) ; 9(5)2020 05 08.
Article in English | MEDLINE | ID: mdl-32397205

ABSTRACT

Pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1 (PYED-1), a heterocyclic corticosteroid derivative of deflazacort, exhibits broad-spectrum antibacterial activity against Gram-negative and Gram-positive bacteria. Here, we investigated the effect of PYED-1 on the biofilms of Staphylococcus aureus, an etiological agent of biofilm-based chronic infections such as osteomyelitis, indwelling medical device infections, periodontitis, chronic wound infections, and endocarditis. PYED-1 caused a strong reduction in biofilm formation in a concentration dependent manner. Furthermore, it was also able to completely remove the preformed biofilm. Transcriptional analysis performed on the established biofilm revealed that PYED-1 downregulates the expression of genes related to quorum sensing (agrA, RNAIII, hld, psm, and sarA), surface proteins (clfB and fnbB), secreted toxins (hla, hlb, and lukD), and capsular polysaccharides (capC). The expression of genes that encode two main global regulators, sigB and saeR, was also significantly inhibited after treatment with PYED-1. In conclusion, PYED-1 not only effectively inhibited biofilm formation, but also eradicated preformed biofilms of S. aureus, modulating the expression of genes related to quorum sensing, surface and secreted proteins, and capsular polysaccharides. These results indicated that PYED-1 may have great potential as an effective antibiofilm agent to prevent S. aureus biofilm-associated infections.

12.
Int J Mol Sci ; 21(9)2020 May 09.
Article in English | MEDLINE | ID: mdl-32397443

ABSTRACT

Iminosugars are sugar analogues endowed with a high pharmacological potential. The wide range of biological activities exhibited by these glycomimetics associated with their excellent drug profile make them attractive therapeutic candidates for several medical interventions. The ability of iminosugars to act as inhibitors or enhancers of carbohydrate-processing enzymes suggests their potential use as therapeutics for the treatment of cystic fibrosis (CF). Herein we review the most relevant advances in the field, paying attention to both the chemical synthesis of the iminosugars and their biological evaluations, resulting from in vitro and in vivo assays. Starting from the example of the marketed drug NBDNJ (N-butyl deoxynojirimycin), a variety of iminosugars have exhibited the capacity to rescue the trafficking of F508del-CFTR (deletion of F508 residue in the CF transmembrane conductance regulator), either alone or in combination with other correctors. Interesting results have also been obtained when iminosugars were considered as anti-inflammatory agents in CF lung disease. The data herein reported demonstrate that iminosugars hold considerable potential to be applied for both therapeutic purposes.


Subject(s)
Cystic Fibrosis/drug therapy , Heterocyclic Compounds, 1-Ring/therapeutic use , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/chemistry , 1-Deoxynojirimycin/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Glycoside Hydrolases/antagonists & inhibitors , Glycosyltransferases/antagonists & inhibitors , Heterocyclic Compounds, 1-Ring/chemical synthesis , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Imino Pyranoses/chemistry , Imino Pyranoses/therapeutic use , Inflammation , Molecular Structure , Mutation , Sequence Deletion , Tartrates/chemistry , Tartrates/therapeutic use
13.
Antibiotics (Basel) ; 9(3)2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32131413

ABSTRACT

Stenotrophomonas maltophilia, an environmental Gram-negative bacterium, is an emerging nosocomial opportunistic pathogen that causes life-threatening infections in immunocompromised patients and chronic pulmonary infections in cystic fibrosis patients. Due to increasing resistance to multiple classes of antibiotics, S. maltophilia infections are difficult to treat successfully. This makes the search for new antimicrobial strategies mandatory. In this study, the antibacterial activity of the heterocyclic corticosteroid deflazacort and several of its synthetic precursors was tested against S. maltophilia. All compounds were not active against standard strain S. maltophilia K279a. The compound PYED-1 (pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1) showed a weak effect against some S. maltophilia clinical isolates, but exhibited a synergistic effect with aminoglycosides. PYED-1 at sub-inhibitory concentrations decreased S. maltophilia biofilm formation. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis demonstrated that the expression of biofilm- and virulence- associated genes (StmPr1, StmPr3, sphB, smeZ, bfmA, fsnR) was significantly suppressed after PYED-1 treatment. Interestingly, PYED-1 also repressed the expression of the genes aph (3´)-IIc, aac (6´)-Iz, and smeZ, involved in the resistance to aminoglycosides.

14.
Microorganisms ; 8(4)2020 03 25.
Article in English | MEDLINE | ID: mdl-32218320

ABSTRACT

In this work, the antibacterial activity of deflazacort and several of its synthetic precursors was tested against a panel of bacterial pathogens responsible for most drug-resistant infections including Staphylococcus aureus, Enterococcus spp., Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Enterobacter spp. The derivative of deflazacort, PYED-1 (pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1) showed the best antibacterial activity in a dose-dependent way. We focused on the action of PYED-1 against S. aureus cells. PYED-1 exhibited an additive antimicrobial effect with gentamicin and oxacillin against the methicillin-resistant S. aureus isolate 00717. In addition to its antimicrobial effect, PYED-1 was found to repress the expression of several virulence factors of S. aureus, including toxins encoded by the hla (alpha-haemolysin), hlb (beta-haemolysin), lukE-D (leucotoxins E-D), and sea (staphylococcal enterotoxin A) genes, and cell surface factors (fnbB (fibronectin-binding protein B) and capC (capsule biosynthesis protein C)). The expression levels of autolysin isaA (immunodominant staphylococcal antigen) were also increased.

15.
Chemistry ; 26(12): 2597-2601, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31860145

ABSTRACT

A highly regio- and stereoselective route to d- and l-cyclohexenyl nucleosides has been devised, using the Tsuji-Trost reaction as the key step. Contrarily to the widely accepted mechanism (involving a net retention of configuration), the reaction proceeded in a highly stereoconvergent manner, providing cis nucleosides regardless of the relative configuration of the starting materials. DFT calculations confirmed the experimental data while suggesting the origin of the stereochemical reaction outcome.


Subject(s)
Nucleosides/chemical synthesis , Carbonates/chemistry , Catalysis , Density Functional Theory , Molecular Structure , Stereoisomerism , Thermodynamics
16.
Eur J Med Chem ; 175: 63-71, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31075609

ABSTRACT

In the frame of a research program aimed to explore the relationship between chirality of iminosugars and their therapeutic potential, herein we report the synthesis of N-akyl l-deoxyiminosugars and the evaluation of the anti-inflammatory properties of selected candidates for the treatment of Pseudomonas aeruginosa infections in Cystic Fibrosis (CF) lung disease. Target glycomimetics were prepared by the shortest and most convenient approach reported to date, relying on the use of the well-known PS-TPP/I2 reagent system to prepare reactive alkoxyalkyl iodides, acting as key intermediates. Iminosugars ent-1-3 demonstrated to efficiently reduce the inflammatory response induced by P. aeruginosa in CuFi cells, either alone or in synergistic combination with their d-enantiomers, by selectively inhibiting NLGase. Surprisingly, the evaluation in murine models of lung disease showed that the amount of ent-1 required to reduce the recruitment of neutrophils was 40-fold lower than that of the corresponding d-enantiomer. The remarkably low dosage of the l-iminosugar, combined with its inability to act as inhibitor for most glycosidases, is expected to limit the onset of undesired effects, which are typically associated with the administration of its d-counterpart. Biological results herein obtained place ent-1 and congeners among the earliest examples of l-iminosugars acting as anti-inflammatory agents for therapeutic applications in Cystic Fibrosis.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/complications , Imino Sugars/therapeutic use , Pseudomonas Infections/complications , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/isolation & purification , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Bronchi/immunology , Bronchi/microbiology , Bronchi/pathology , Dose-Response Relationship, Drug , Humans , Imino Sugars/administration & dosage , Imino Sugars/chemistry , Imino Sugars/pharmacology , Inflammation/prevention & control , Inhibitory Concentration 50 , Mice , Neutrophils/immunology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Stereoisomerism , beta-Glucosidase/antagonists & inhibitors
17.
RSC Adv ; 9(37): 21519-21524, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-35521350

ABSTRACT

The synthesis of deflazacort (DFZ) and a preliminary evaluation of its microbial activity against the human pathogens Acinetobacter baumannii and Staphylococcus aureus is herein reported. While DFZ is inactive, one of its synthetic precursors showed a strong antibacterial activity against both Gram-negative and -positive bacteria.

18.
J Med Chem ; 60(23): 9462-9469, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29112434

ABSTRACT

The highly stereocontrolled de novo synthesis of l-NBDNJ (the unnatural enantiomer of the iminosugar drug Miglustat) and a preliminary evaluation of its chaperoning potential are herein reported. l-NBDNJ is able to enhance lysosomal α-glucosidase levels in Pompe disease fibroblasts, either when administered singularly or when coincubated with the recombinant human α-glucosidase. In addition, differently from its d-enantiomer, l-NBDNJ does not act as a glycosidase inhibitor.


Subject(s)
1-Deoxynojirimycin/analogs & derivatives , Enzyme Activation/drug effects , Fibroblasts/drug effects , Glycogen Storage Disease Type II/drug therapy , alpha-Glucosidases/metabolism , 1-Deoxynojirimycin/chemical synthesis , 1-Deoxynojirimycin/chemistry , 1-Deoxynojirimycin/pharmacology , Allosteric Regulation/drug effects , Cell Line , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fibroblasts/enzymology , Fibroblasts/metabolism , Glycogen Storage Disease Type II/enzymology , Glycogen Storage Disease Type II/metabolism , Humans , Lysosomes/drug effects , Lysosomes/enzymology , Lysosomes/metabolism , Models, Molecular , Stereoisomerism
19.
J Sci Food Agric ; 97(2): 373-383, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27342219

ABSTRACT

Sideritis species have been used in folk medicine for their antimicrobial, antiulcerogenic, digestive and anti-inflammatory properties. Over the years, the phytochemistry of the genus Sideritis has been studied, and various terpenoids, sterols, coumarins and especially flavonoid aglycones and glycosides have been identified. In particular, species from the Balkan Peninsula have been studied and were found to be rich in flavonoids, with valuable antioxidant activity. In the folk medicine of the Balkan countries, Sideritis raeseri is used as a herbal tea in the treatment of inflammation, gastrointestinal disorders and coughs, and also as a tonic, whereas extracts are used as a component of dietary supplements for anaemia. Its dried inflorescences are used to prepare a beverage called 'mountain tea'. In light of the considerable interest generated in the chemistry, pharmacological properties and commercial value of S. raeseri Boiss. & Heldr., we review and summarise the available literature on these plants. The review details the chemical composition of the essential oil, its mineral and polyphenol contents, the naming of these plants and their physicochemical characterisation, and the nuclear magnetic resonance spectral data and biological properties associated with the plant extracts, with a focus on their potential chemotherapeutic applications. © 2016 Society of Chemical Industry.


Subject(s)
Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Flavonoids/pharmacology , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Polyphenols/pharmacology , Sideritis/chemistry , Anti-Infective Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Flavonoids/therapeutic use , Humans , Medicine, Traditional , Oils, Volatile/chemistry , Oils, Volatile/therapeutic use , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Polyphenols/therapeutic use
20.
Curr Pharm Biotechnol ; 17(6): 513-23, 2016.
Article in English | MEDLINE | ID: mdl-26778456

ABSTRACT

Aristotelia chilensis ([Molina], Stuntz) a member of the family Eleocarpaceae, is a plant native to Chile that is distributed in tropical and temperate Asia, Australia, the Pacific Area, and South America. The juice of its berries has important medicinal properties, as an astringent, tonic, and antidiarrhoeal. Its many qualities make the maqui berry the undisputed sovereign of the family of so-called "superfruits", as well as a valuable tool to combat cellular inflammation of bones and joints. Recently, it is discovered that the leaves of the maqui berry have important antibacterial and antitumour activities. This review provides a comprehensive overview of the traditional use, phytochemistry, and biological activity of A. chilensis using information collected from scientific journals, books, and electronic searches. Anthocyanins, other flavonoids, alkaloids, cinnamic acid derivatives, benzoic acid derivatives, other bioactive molecules, and mineral elements are summarized. A broad range of activities of plant extracts and fractions are presented, including antioxidant activity, inhibition of visible light-induced damage of photoreceptor cells, inhibition of α-glucosidase, inhibition of pancreatic lipase, anti-diabetic effects, anti-inflammatory effects, analgesic effects, anti-diabetes, effective prevention of atherosclerosis, promotion of hair growth, anti-photo ageing of the skin, and inhibition of lipid peroxidation. Although some ethnobotanical uses have been supported in in vitro experiments, further studies of the individual compounds or chemical classes of compounds responsible for the pharmacological effects and the mechanisms of action are necessary. In addition, the toxicity and the side effects from the use of A. chilensis, as well as clinical trials, require attention.


Subject(s)
Elaeocarpaceae , Plant Extracts/pharmacology , Alkaloids/analysis , Animals , Flavonoids/analysis , Fruit , Humans , Medicine, Traditional , Phytochemicals/analysis , Plant Extracts/chemistry , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...