Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 99(1): 165, 2015 Jan.
Article in English | MEDLINE | ID: mdl-30699771

ABSTRACT

Mandevilla (Apocynaceae) is an ornamental tropical vine popular for its bright and attractive flowers. During 2012 to 2013, 12 Mandevilla sp. samples from Minnesota and Florida nurseries were submitted for analysis at the University of Minnesota Plant Disease Clinic. Plants showed mosaic symptoms, leaf deformation, premature leaf senescence, and vine dieback. Filamentous virus particles with modal lengths 700 to 900 nm were observed by transmission electron microscopy (TEM) in partially purified preparations from symptomatic leaves. Partially purified virions were obtained using 30% sucrose cushion centrifuged at 109,000 gmax for 2 h at 10°C (5). No other virus particles were observed in these samples, nor were any observed in non-symptomatic samples. One sample was submitted as potted plant (Mandevilla 'Sunmandeho' Sun Parasol Giant White) and was kept under greenhouse conditions for subsequent analyses. Total RNA (Qiagen) was extracted from this sample, and Potyvirus was detected using the universal primers Poty S (5'-GGN AAY AAY AGY GGN CAR CC-3') and PV1 (5'-20(T)V-3') (1) by reverse transcription (RT)-PCR (3). The amplified product was the expected ~1.7-kb, corresponding to the partial nuclear inclusion body gene, the coat protein (CP) gene, and the 3' end untranslated region. The RT-PCR amplicon was cloned (NEB) and sequenced, and the 1,720-bp consensus sequence was deposited in GenBank (Accession No. KM243928). NCBI BLAST analysis at the nucleotide level revealed highest identity (83%) with an isolate of Catharanthus mosaic virus (CatMV) from Brazil (Accession No. DQ365928). Pairwise analysis of the predicted 256 amino acid CP revealed 91% identity with the CatMV Brazilian isolate (ABI94824) and 68% or less identity with other potyviruses. Two potyviruses are usually considered the same species if their CP amino acid sequences are greater than 80% identical (2). Serological analysis of the infected sample Mandevilla 'Sunmandeho' Sun Parasol Giant White using a CatMV specific antiserum (4) resulted in positive indirect ELISA reactions. CatMV has been previously reported in periwinkle (Catharanthus roseus) in Brazil (4). Based on the analyses by TEM, RT-PCR, nucleotide and amino acid sequence identities, and serological reactivity, we identify this virus as a U.S. Mandevilla isolate of CatMV. To our knowledge, this is the first report of Catharanthus mosaic virus both in the United States and in Mandevilla. References: (1) J. Chen et al. Arch Virol. 146:757, 2001. (2) A. Gibbs and K. Ohshima. Ann. Rev. Phytopathol. 48:205, 2010. (3) R. L. Jordan et al. Acta Hortic. 901:159, 2011. (4) S. C. Maciell et al. Sci. Agric. Piracicaba, Brazil. 68:687, 2011. (5) D. Mollov et al. Arch Virol. 158:1917, 2013.

2.
Clin Ter ; 165(2): 91-3, 2014.
Article in English | MEDLINE | ID: mdl-24770810

ABSTRACT

OBJECTIVE: The concomitance of psoriasis and high IgE levels in the same patient, possibly associated to allergies, should not come as a surprise anymore, because both diseases are characterised by an immunological disorder, involving cytokines and other inflammatory mediators, with massive activation of the cell-mediated immunity. MATERIALS AND METHODS: During a period of 18 months, using a radio-immunologic method, we assessed the level of IgE in patients with severe psoriasis who were not responding to the common therapy. RESULTS: Patients with severe psoriasis had high levels of IgE. CONCLUSIONS: IgEs have an important role in pathogenesis of psoriasis and atopic dermatitis, but the mechanism is not yet clear.


Subject(s)
Immunoglobulin E/blood , Psoriasis/blood , Adult , Female , Humans , Male , Middle Aged , Psoriasis/immunology , Severity of Illness Index
3.
Clin Ter ; 164(2): 111-4, 2013.
Article in English | MEDLINE | ID: mdl-23698202

ABSTRACT

INTRODUCTION: The properties of colostrum were recognized and investigated more thoroughly in the first half of the eighties, when the immune factors and growth factors it contains were pointed out. Numerous studies show that the administration of colostrum benefits the subjects with type 2 diabetes mellitus as it gradually regulates appetite, improves utilization of nutrients, especially glucose, and leads to a significant decrease in body fat. MATERIALS AND METHODS: The following study is aimed at verifying a possible reduction in the use of insulin in 27 subjects with type 2 diabetes, treated with goat colostrum in the form gastro-resistant tablets of 300 mg (4/die). RESULTS: In subjects with type 2 diabetes treated with insulin, the administration of colostrum has obtained a significant reduction of insulin dosage and normalization of blood glucose levels. CONCLUSIONS: The effects of colostrum are presumably linked to increased levels of IGF-1 that improves the utilization of glucose, stimulates glycogen and protein synthesis.


Subject(s)
Colostrum , Diabetes Mellitus, Type 2/therapy , Administration, Oral , Aged , Animals , Diabetes Mellitus, Type 2/drug therapy , Female , Goats , Humans , Insulin/therapeutic use , Longitudinal Studies , Male , Middle Aged , Tablets
4.
Clin Ter ; 164(2): 115-8, 2013.
Article in English | MEDLINE | ID: mdl-23698203

ABSTRACT

INTRODUCTION: Chronic Urticaria is a difficult to define condition from the nosographic standpoint, with complex pharmacological management, that heavily impacts the life of the patient. Some forms show not to be responsive to anti H1 anti-histaminic and require other treatments. One of these can be the treatment with Cyclosporine A (CsA). MATERIALS AND METHODS: This study, open and sequential, reports the results of short-term treatment over a sample of adults (21 patients) of both sexes, all suffering from chronic urticaria with IgE levels higher than 200 mU/ml treated with 4 mg/kg/die of CsA. RESULTS: The results obtained show a reduction in the levels of total IgE and a significant improvement in symptoms; there were no adverse effects. CONCLUSIONS: Cyclosporine is an excellent treatment for chronic urticaria because it reduces the activity of T lymphocytes and reduction of the histamine release from the mast cells and basophils.


Subject(s)
Cyclosporine/administration & dosage , Immunoglobulin E/blood , Immunosuppressive Agents/administration & dosage , Urticaria/blood , Administration, Oral , Adolescent , Adult , Aged , Chronic Disease , Female , Humans , Male , Middle Aged , Urticaria/drug therapy , Urticaria/immunology , Young Adult
5.
Plant Dis ; 97(10): 1389, 2013 Oct.
Article in English | MEDLINE | ID: mdl-30722129

ABSTRACT

Ornamental flower bulbs (including true bulbs, bulbils, corms, tubers, and rhizomes) are increasingly important floriculture crops. Amaryllis is a small genus of flowering bulbs, with two species. The South African native, Amaryllis belladonna, also known as belladonna lily, Jersey lily, naked lady, Amarillo, or March lily, is one of numerous ornamental species with the common name "lily" due to their flower shape and growth habit. Amaryllis are popular for their 6- to 10-inch trumpet shaped colorful flowers that are borne on 1- to 2-foot stalks. In January, 2011, a home gardener in California observed mosaic symptoms on the leaves of A. belladonna growing in her garden. Leaf samples were sent to Agdia Inc. for testing. Samples tested positive for the presence of Potyvirus in a reverse transcription (RT)-PCR screen using universal potyvirus primers (2) yielding the expected ∼1,600-bp product corresponding to the partial nuclear inclusion body (NIb) gene, full-length coat protein (CP) gene, and 3' end untranslated region (UTR). Electron microscopy of symptomatic leaves confirmed the presence of filamentous potyvirus-like particles. The RT-PCR amplicon was cloned and sequenced (2); the 1,616-bp consensus sequence was deposited in GenBank (Accession No. JX865782). NCBI BLAST analysis of the consensus sequence revealed highest identities with isolates of Nerine yellow stripe virus (NeYSV; family Potyviridae, genus Potyvirus). Pair-wise analyses of the 261 amino acid sequence of the predicted CP had 88% sequence identity with a Stenomesson isolate reported from the Netherlands (EU042758); 87% identity with Hymenocallis and Nerine isolates, both also from the Netherlands (EF362622 and EF362621, respectively); and, 86% with two New Zealand isolates infecting Amaryllis or Vallota (FJ618537 and DQ407932, respectively). The five Netherlands and New Zealand isolates are more closely related to each other than to the U.S. isolate as they share 93 to 98% CP identity. When using viral genome sequence relatedness as a criterion for defining potyvirus species, isolates with CP amino acid identity greater than 80% are considered the same species (1). The predicted coat protein gene of the California isolate was sub-cloned into the bacterial expression vector pET44 EK/LIC. Serological analysis of coat protein expressing clones in ELISA and Western Blot analysis using a potyvirus broad-spectrum reacting monoclonal antibody PTY-2 (3) and a NeYSV-specific rabbit antiserum (Applied Plant Research, Lisse, The Netherlands) resulted in positive reactions. NeYSV has previously been reported in the United Kingdom, the Netherlands, Australia, and New Zealand. Based on the results of electron microscopy, RT-PCR, nucleotide and amino acid identity, and serological reactivity, we identify this virus as a U.S. isolate of NeYSV, NeYSV-US. To our knowledge, this is the first report of Nerine yellow stripe virus in the United States. Development of antisera specific to this U.S. isolate is in progress. References: (1) A. Gibbs and K. Ohshima. Ann. Rev. Phytopathol. 48:205, 2010. (2) R. L. Jordan et al. Acta Hortic. 901:159, 2011. (3) R. L. Jordan and J. Hammond. J. Gen. Virol. 72:1531, 1991.

6.
Plant Dis ; 92(4): 648, 2008 Apr.
Article in English | MEDLINE | ID: mdl-30769623

ABSTRACT

Tricyrtis formosana (toad lily) is an herbaceous perennial in the family Liliaceae. Native to Asia, T. formosana is now used in the United States as an ornamental border plant in woodland and shade gardens. A T. formosana var. stolonifera plant showing chlorosis and mild mosaic symptoms obtained from a commercial grower in Columbia County, Oregon tested positive for potyvirus by ELISA using our genus Potyvirus broad spectrum reacting PTY-1 Mab (3). Electron microscopic examination of negatively stained leaf-dip preparations from symptomatic leaves showed a mixture of two sizes of flexuous rod-shaped particles, approximately 700 nm long (resembling potyviruses) and 470 nm long (resembling potexviruses). Total RNA extracts from symptomatic leaves were used in reverse transcription (RT)-PCR assays with potyvirus- or potexvirus-specific primers. The degenerate primers for the genus Potyvirus (2) direct the amplification of approximately 1,600-bp fragments from the 3' terminus of most potyviruses. Overlapping potexvirus cDNA clones were generated using degenerate genus Potexvirus replicase primers, and later, virus-specific primers in 3' RACE (4). The RT-PCR amplified fragments were cloned and sequenced. Analysis of the 1,688 nt potyvirus sequence (GenBank Accession No. AY864850) using BLAST showed highest identity with members of the Bean common mosaic virus (BCMV) subgroup of potyviruses. Pairwise amino acid comparisons of the CP region of the new potyvirus showed 78% identity to strains of Bean common mosaic necrosis virus, 77% identity with Soybean mosaic virus and Ceratobium mosaic virus, 72 to 76% identity to strains of BCMV, and only 50 to 64% identity with 54 other potyviruses. Additionally, similar pairwise analysis of the CP nucleotide sequence and 3'NCR of the new potyvirus generally revealed the same identity trend as described for the CP amino acid sequences, albeit with the highest nucleotide identities at less than 73% for CP and less than 66% for the 3'NCR. These results suggest that this virus is a new species in the genus Potyvirus (1), which we have tentatively named Tricyrtis virus Y (TrVY). BLAST analysis of the 3' terminal 3,010 nt potexvirus sequence (GenBank Accession No. AY864849) showed 89% nucleotide identity with Lily virus X (LVX). Pairwise amino acid comparisons of the putative gene products revealed 98, 95, 94 and 99% identity with LVX TGBp1, TGBp2, TGBp3-like, and CP, respectively, and 97% identity with the 108 nt 3'NCR. Homology with other members of the genus Potexvirus was less than 50% for these corresponding genes and gene products. ELISA and RT-PCR analysis for these two viruses in toad lily plants obtained from a grower in Illinois also revealed the presence of TrVY in three of seven cultivars and LVX coinfecting only one of the plants. The standard propagation method for T. formosana is plant division, which along with mechanical contact, provides efficient means for spread of both viruses. To our knowledge, this is the first description of this potyvirus and the first report of any potyvirus in T. formosana. LVX has been reported in Lilium formosanum, but to our knowledge, this is also the first report of LVX in T. formosana. References: (1) P. H. Berger et al. Potyviridae. Page 819 in: Virus Taxonomy: 8th Rep. ICTV, 2005. (2) M. A. Guaragna et al. Acta. Hortic. 722:209, 2006. (3) R. L. Jordan and J. Hammond. J. Gen. Virol. 72:1531, 1991. (4) C. J. Maroon-Lango et al. Arch. Virol. 150:1187, 2005.

7.
Arch Virol ; 150(6): 1187-201, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15750864

ABSTRACT

Three strains of Pepino mosaic virus (PepMV) found in the US have been cloned and sequenced by RT-PCR using total RNA from infected tissue as template, and degenerate potexvirus- and PepMV species- and isolate-specific primers. Despite limited source material, the complete nucleotide sequences (6413 and 6410 nts, respectively) of two isolates, PepMV-US1 and PepMV-US2, were obtained and analyzed using total RNA from less than 0.2 g of a pooled infected tomato leaf sample from Arizona. Sequence of the 3'-end of the third isolate from infected fresh tomato fruits from Maryland (PepMV-US3) was also determined. The genome organizations of PepMV-US1 and US2 were typical of the genus Potexvirus, with the following reading frame order: ORF 1, encoding a putative replicase; ORFs 2-4, triple gene block proteins (TGBp) 1-3; and ORF 5, coat protein (CP). Gene-for-gene comparison between PepMV-US1 and US2 revealed the following amino acid identities: 91% in replicase, 89% in TGBp1, 92% in TGBp2, 85% in TGBp3, and 93% in the CP; with an overall nucleotide identity of 86%. Nucleotide sequence comparisons between US1 and US2 and the European isolates showed only 79-82% identity, whereas the identity among the European isolates was over 99%. Sequence comparisons and phylogenetic analysis indicate that PepMV-US1 and US2 are distinctly different from the European isolates, while the CP of PepMV-US3 is nearly identical to the European isolates. The results presented also suggest that TGBp1 and TGBp3 are more suitable than either the replicase or coat protein gene products for discriminating PepMV isolates.


Subject(s)
Cloning, Molecular , Potexvirus/classification , Potexvirus/isolation & purification , Sequence Analysis, DNA , Solanum lycopersicum/virology , Amino Acid Sequence , Genome, Viral , Molecular Sequence Data , Open Reading Frames/genetics , Plant Diseases/virology , Potexvirus/genetics , United States , Viral Proteins/genetics
8.
Plant Dis ; 88(5): 574, 2004 May.
Article in English | MEDLINE | ID: mdl-30812674

ABSTRACT

Verbena × hybrida is an ornamental annual used in rock gardens as an edging plant and hanging baskets. It comes in a variety of colors and grows approximately 1.5 to 2.5 cm (6 to 10 inches) high. In the spring of 2002, verbena cv. Lavender Shades plants from California showing leaf mosaic symptoms tested positive for potyvirus using an antigen-coated plate enzyme-linked immunosorbent assay with our genus Potyvirus broad spectrum reacting PTY-1 monoclonal as the detecting antibody (3). The virus was transmitted mechanically to Nicotiana benthamiana by sap inoculation from infected verbena plants. Infected tobacco showed systemic mild mosaic symptoms. Total RNA extractions from infected verbena and tobacco leaves were used in reverse transcription-polymerase chain reaction (RT-PCR) assays with generic potyvirus-specific primers that amplify highly conserved 700-bp or 1,600-bp fragments from the 3' terminus of most potyviruses. This region includes the 3' noncoding region (3'NCR) and the potyviral coat protein (CP). The PCR-amplified fragments were cloned by using standard TA cloning procedures and sequenced using dye-terminator chemistry. The cloned nucleotide and putative coat protein amino acid sequences from the infected verbena and tobacco plants were compared with the corresponding regions of other potyviruses. Amino acid comparison of the CP region of the verbena po-tyvirus showed 95 to 96% identity to four pea mosaic strains (PMV) of Bean yellow mosaic virus (BYMV), 85 to 89% identity to 20 other strains of BYMV, 74 to 76% identity with six strains of Clover yellow vein virus (CYVV), and only 50 to 64% identity with 28 other potyviruses. Pairwise comparisons among and between the CP sequences of PMV, BYMV, CYVV, and other potyviruses revealed identities of 92 to 99% for BYMV∷ BYMV, PMV∷PMV, and CYVV∷CYVV; 84 to 89% for BYMV∷ PMV, 69 to 78% for BYMV∷CYVV and PMV∷CYVV, and 50 to 64% for all other potyvirus combinations. Additionally, similar pairwise analysis of the 3'NCR of the verbena potyvirus revealed 98 to 99% identity to PMV strains, 81 to 94% to other BYMVs, 68 to 75% to CYVVs, and 52 to 64% with other potyviruses. Other 3'NCR pairwise comparisons generally revealed the same identity trend as described for the CP. Further serological analysis with our panel of BYMV-specific, BYMV-subgroup, and potyvirus cross-reactive monoclonal antibodies (3) confirmed the designation of the verbena potyvirus isolate as a pea mosaic strain of BYMV. To our knowledge this is the first confirmed report of BYMV-pea mosaic strain in Verbena (1,2). References: (1) Agdia, Inc. Positive Ornamental Plant Samples. Agdia On-line Publication, 2003. (2) A. A. Brunt et al. Verbena hybrida. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version 20. On-line publication, August 1996. (3) R. L. Jordan, and J. Hammond. J. Gen. Virol. 72:1531, 1991.

SELECTION OF CITATIONS
SEARCH DETAIL
...