Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37631429

ABSTRACT

Ethylene is a phytohormone that is responsible of fruit and vegetable ripening. TiO2 has been studied as a possible solution to slowing down unwanted ripening processes, due to its photocatalytic capacity which enables it to remove ethylene. Thus, the objective of this study was to develop nanocomposites based on two types of eco-friendly materials: Mater-Bi® (MB) and poly(lactic acid) (PLA) combined with nano-TiO2 for ethylene removal and to determine their ethylene-removal capacity. First, a physical-chemical characterization of nano-TiO2 of different particle sizes (15, 21, 40 and 100 nm) was done through structural and morphological analysis (DRX, FTIR and TEM). Then, its photocatalytic activity and the ethylene-removal capacity were determined, evaluating the effects of time and the type of light irradiation. With respect to the analysis of TiO2 nanoparticles, the whole samples had an anatase structure. According to the photocatalytic activity, nanoparticles of 21 nm showed the highest activity against ethylene (~73%). The results also showed significant differences in ethylene-removal activity when comparing particle size and type and radiation time. Thus, 21 nm nano-TiO2 was used to produce nanocomposites through the melt-extrusion process to simulate industrial processing conditions. With respect to the nanocomposites' ethylene-removing properties, there were significant differences between TiO2 concentrations, with samples with 5% of active showed the highest activity (~57%). The results obtained are promising and new studies are needed to focus on changes in material format and the evaluation in ethylene-sensitive fruits.

2.
Molecules ; 28(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37049807

ABSTRACT

ß-cyclodextrin and allyl isothiocyanate inclusion complexes (ß-CD:AITC) have been proposed for developing fresh fruit and vegetable packaging materials. Therefore, the aim of this research was to develop active materials based on poly(lactic acid) (PLA) loaded with ß-CD:AITC and to assess changes in the material properties during the release of AITC to food simulants. PLA films with 0, 5 and 10 wt.% ß-CD:AITC were developed by extrusion. Surface properties were determined from contact angle measurements. Films were immersed in water, aqueous and fatty simulants to assess the absorption capacity and the change in the thermal properties. Moreover, the release of AITC in both simulants was evaluated by UV-spectroscopy and kinetic parameters were determined by data modeling. Results showed that a higher concentration of ß-CD:AITC increased the absorption of aqueous simulant of films, favoring the plasticization of PLA. However, the incorporation of ß-CD:AITC also avoided the swelling of PLA in fatty simulant. These effects and complex relationships between the polymer, inclusion complexes and food simulant explained the non-systematic behavior in the diffusion coefficient. However, the lower partition coefficient and higher percentage of released AITC to the fatty simulant suggested the potential of these materials for high-fat fruit and vegetable active packaging applications.


Subject(s)
Fruit , Vegetables , Polyesters , Product Packaging , Food Packaging/methods
3.
Polymers (Basel) ; 15(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36987328

ABSTRACT

Among the most promising synthetic biopolymers to replace conventional plastics in numerous applications is MaterBi® (MB), a commercial biodegradable polymer based on modified starch and synthetic polymers. Actually, MB has important commercial applications as it shows interesting mechanical properties, thermal stability, processability and biodegradability. On the other hand, research has also focused on the incorporation of natural, efficient and low-cost active compounds into various materials with the aim of incorporating antimicrobial and/or antioxidant capacities into matrix polymers to extend the shelf life of foods. Among these is ellagic acid (EA), a polyphenolic compound abundant in some fruits, nuts and seeds, but also in agroforestry and industrial residues, which seems to be a promising biomolecule with interesting biological activities, including antioxidant activity, antibacterial activity and UV-barrier properties. The objective of this research is to develop a film based on commercial biopolymer Mater-Bi® (MB) EF51L, incorporating active coating from chitosan with a natural active compound (EA) at two concentrations (2.5 and 5 wt.%). The formulations obtained complete characterization and were carried out in order to evaluate whether the incorporation of the coating significantly affects thermal, mechanical, structural, water-vapor barrier and disintegration properties. From the results, FTIR analysis yielded identification, through characteristic peaks, that the type of MB used is constituted by three polymers, namely PLA, TPS and PBAT. With respect to the mechanical properties, the values of tensile modulus and tensile strength of the MB-CHI film were between 15 and 23% lower than the values obtained for the MB film. The addition of 2.5 wt.% EA to the CHI layer did not generate changes in the mechanical properties of the system, whereas a 5 wt.% increase in ellagic acid improved the mechanical properties of the CHI film through the addition of natural phenolic compounds at high concentrations. Finally, the disintegration process was mainly affected by the PBAT biopolymer, causing the material to not disintegrate within the times indicated by ISO 20200.

4.
Polymers (Basel) ; 15(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36904321

ABSTRACT

The food industry has a current challenge of increasing the recycling of post-consumer plastics to reduce plastic waste towards a circular economy, especially flexible polypropylene, which is highly demanded in food packaging. However, recycling post-consumer plastics is limited because service life and reprocessing degrade their physical-mechanical properties and modify the migration of components from the recycled material to the food. This research evaluated the feasibility of valorization of post-consumer recycled flexible polypropylene (PCPP) by incorporating fumed nanosilica (NS). For this purpose, the effect of concentration and type (hydrophilic and hydrophobic) of NS on the morphological, mechanical, sealing, barrier and overall migration properties of PCPP films was studied. Incorporating NS improved Young's modulus and, more significantly, tensile strength at 0.5 wt% and 1 wt%, where a better particle dispersion was confirmed by EDS-SEM, but it diminished elongation at breakage of the films. Interestingly, NS tended to increase the seal strength of PCPP nanocomposite films more significantly at higher NS content, showing a seal failure of the adhesive peel type which is preferred for flexible packaging. NS at 1 wt% did not affect the water vapor and oxygen permeabilities of the films. Overall migration of PCPP and nanocomposites exceeded the limit value of 10 mg dm-2 allowed by European legislation at the studied concentrations of 1% and 4 wt%. Nonetheless, NS reduced the overall migration of PCPP from 17.3 to 15 mg dm-2 in all nanocomposites. In conclusion, PCPP with 1 wt% of hydrophobic NS presented an improved overall performance of the studied packaging properties.

5.
Polymers (Basel) ; 15(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36904386

ABSTRACT

Collection and mechanical recycling of post-consumer flexible polypropylene packaging is limited, principally due to polypropylene being very light-weight. Moreover, service life and thermal-mechanical reprocessing degrade PP and change its thermal and rheological properties according to the structure and provenance of recycled PP. This work determined the effect of incorporating two fumed nanosilica (NS) types on processability improvement of post-consumer recycled flexible polypropylene (PCPP) through ATR-FTIR, TGA, DSC, MFI and rheological analysis. Presence of trace polyethylene in the collected PCPP increased the thermal stability of the PP and was significantly maximized by NS addition. The onset decomposition temperature raised around 15 °C when 4 and 2 wt% of a non-treated and organically modified NS were used, respectively. NS acted as a nucleating agent and increased the crystallinity of the polymer, but the crystallization and melting temperatures were not affected. The processability of the nanocomposites was improved, observed as an increase in viscosity, storage and loss moduli with respect to the control PCPP, which were deteriorated due to chain scission during recycling. The highest recovery in viscosity and reduction in MFI were found for the hydrophilic NS due to a greater impact of hydrogen bond interactions between the silanol groups of this NS and the oxidized groups of the PCPP.

6.
Polymers (Basel) ; 15(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36679242

ABSTRACT

Betalains are bioactive compounds with remarkable functional and nutritional activities for health and food preservation and attractiveness. Nevertheless, they are highly sensitive to external factors, such as oxygen presence, light, and high temperatures. Therefore, the search for new structures, polymeric matrices, and efficient methods of encapsulation of these compounds is of great interest to increase their addition to food products. In this work, betalains were extracted from red beetroot. Betacyanin and betaxanthin contents were quantified. Subsequently, these compounds were successfully encapsulated into the core of coaxial electrosprayed capsules composed of hydroxypropyl methylcellulose (HPMC) and gelatin (G). The effect of incorporating the carbohydrate and the protein both in the core or shell structures was studied to elucidate the best composition for betalain protection. Morphological, optical, and structural properties were analyzed to understand the effect of the incorporation of the bioactive compounds in the morphology, color, and chemical interactions between components of resulting electrosprayed capsules. The results of the thermogravimetric and encapsulation efficiency analysis coincided that the incorporation of beetroot extract in G in the core and HPMC in the shell resulted in the structure with greater betalain protection. The effectiveness of the core/shell structure was confirmed for future food applications.

7.
Crit Rev Food Sci Nutr ; 62(20): 5495-5510, 2022.
Article in English | MEDLINE | ID: mdl-33605809

ABSTRACT

This review was focused on describing the combination of electrospinning and cyclodextrin inclusion complexes as one of the newest alternatives for the development of food packaging materials with antimicrobial and/or antioxidant properties. The advantages of this technological combination, the routes to design the active materials, the characterization and application of such materials were reviewed. Electrospinning has allowed developing active packaging materials composed by fibrillary structures with a high ratio surface-to-volume. On the other hand, cyclodextrin inclusion complexes have maintained the properties of active compounds when they have been incorporated in packaging materials. Both methods have been recently combined and novel active food packaging materials have been obtained through three different routes. Polymeric solutions containing preformed (route 1) or in-situ formed (route 2) cyclodextrin inclusion complexes have been electrospun to obtain packaging materials. Furthermore, cyclodextrin inclusion complexes solutions have been directly electrospun (route 3) in order to produce those materials. The developed packaging materials have exhibited a high active compound loading with a long lasting release. Therefore, the protection of different foodstuff against microbial growth, oxidation and quality decay as well as the maintenance of their physical and sensory properties have been achieved when those materials were applied as active packaging.


Subject(s)
Anti-Infective Agents , Cyclodextrins , Anti-Bacterial Agents/chemistry , Cyclodextrins/chemistry , Food Packaging/methods , Polymers/chemistry
8.
Antioxidants (Basel) ; 10(12)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34943079

ABSTRACT

The performance characteristics of polylactic acid (PLA) as an active food packaging film can be highly influenced by the incorporation of active agents (AAs) into PLA, and the type of processing technique. In this review, the effect of processing techniques and the addition of natural AAs on the properties related to PLA performance as a packaging material are summarized and described through a systematic analysis, giving new insights about the relation between processing techniques, types of AA, physical-mechanical properties, barriers, optical properties, compostability, controlled release, and functionalities in order to contribute to the progress made in designing antioxidant and antimicrobial PLA packaging films. The addition of AAs into PLA films affected their optical properties and influenced polymer chain reordering, modifying their thermal properties, functionality, and compostability in terms of the chemical nature of AAs. The mechanical and barrier performance of PLA was affected by the AA's dispersion degree and crystallinity changes resulting from specific processing techniques. In addition, hydrophobicity and AA concentration also modified the barrier properties of PLA. The release kinetics of AAs from PLA were tuned, modifying diffusion coefficient of the AAs in terms of the different physical properties of the films that resulted from specific processing techniques. Several developments based on the incorporation of antimicrobial and antioxidant substances into PLA have displayed outstanding activities for food protection against microbial growth and oxidation.

9.
Polymers (Basel) ; 13(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34833267

ABSTRACT

Bionanocomposites based on Polylactide (PLA) and Polyhydroxybutyrate (PHB) blends were successfully obtained through a combined extrusion and impregnation process using supercritical CO2 (scCO2). Graphene oxide (GO) and cinnamaldehyde (Ci) were incorporated into the blends as nano-reinforcement and an active compound, respectively, separately, and simultaneously. From the results, cinnamaldehyde quantification values varied between 5.7% and 6.1% (w/w). When GO and Ci were incorporated, elongation percentage increased up to 16%, and, therefore, the mechanical properties were improved, with respect to neat PLA. The results indicated that the Ci diffusion through the blends and bionanocomposites was influenced by the nano-reinforcing incorporation. The disintegration capacity of the developed materials decreased with the incorporation of GO and PHB, up to 14 and 23 days of testing, respectively, without compromising the biodegradability characteristics of the final material.

10.
Compr Rev Food Sci Food Saf ; 20(4): 3388-3403, 2021 07.
Article in English | MEDLINE | ID: mdl-34118127

ABSTRACT

Currently, reducing packaging plastic waste and food losses are concerning topics in the food packaging industry. As an alternative for these challenges, antimicrobial and antioxidant materials have been developed by incorporating active agents (AAs) into biodegradable polymers to extend the food shelf life. In this context, developing biodegradable active materials based on polylactic acid (PLA) and natural compounds are a great alternative to maintain food safety and non-toxicity of the packaging. AAs, such as essential oils and polyphenols, have been added mainly as antimicrobial and antioxidant natural compounds in PLA packaging. In this review, current techniques used to develop active PLA packaging films were described in order to critically compare their feasibility, advantages, limitations, and relevant processing aspects. The analysis was focused on the processing conditions, such as operation variables and stages, and factors related to the AAs, such as their concentrations, weight losses during processing, and incorporation technique, among others. Recent developments of active PLA-based monolayers and bi- or multilayer films were also considered. In addition, patents on inventions and technologies on active PLA-based films for food packaging were reviewed. This review highlights that the selection of the processing technique and conditions to obtain active PLA depends on the type of the AA regarding its volatility, solubility, and thermosensitivity.


Subject(s)
Anti-Infective Agents , Polymers , Antioxidants , Polyesters
11.
Polymers (Basel) ; 13(9)2021 May 07.
Article in English | MEDLINE | ID: mdl-34066956

ABSTRACT

The deterioration of the physical-mechanical properties and loss of the chemical safety of plastics after consumption are topics of concern for food packaging applications. Incorporating nanoclays is an alternative to improve the performance of recycled plastics. However, properties and overall migration from polymer/clay nanocomposites to food require to be evaluated case-by-case. This work aimed to investigate the effect of organic modifier types of clays on the structural, thermal and mechanical properties and the overall migration of nanocomposites based on 50/50 virgin and recycled post-consumer polypropylene blend (VPP/RPP) and organoclays for food packaging applications. The clay with the most hydrophobic organic modifier caused higher thermal stability of the nanocomposites and greater intercalation of polypropylene between clay mineral layers but increased the overall migration to a fatty food simulant. This migration value was higher from the 50/50 VPP/RPP film than from VPP. Nonetheless, clays reduced the migration and even more when the clay had greater hydrophilicity because of lower interactions between the nanocomposite and the fatty simulant. Conversely, nanocomposites and VPP/RPP control films exhibited low migration values in the acid and non-acid food simulants. Regarding tensile parameters, elongation at break values of PP film significantly increased with RPP addition, but the incorporation of organoclays reduced its ductility to values closer to the VPP.

12.
Front Nutr ; 8: 799779, 2021.
Article in English | MEDLINE | ID: mdl-35059427

ABSTRACT

Background: Allyl isothiocyanate is an excellent antimicrobial compound that has been applied in the development of active food packaging materials in the last years. However, the high volatility of this compound could prevent a lasting effect over time. In order to avoid this problem, cyclodextrin inclusion complexes have been proposed as an alternative, being beta-cyclodextrin (ß-CD) as the main candidate. In addition, ß-CD could act as a relative humidity-responsive nanoparticle. In this regard, the aim of this study was to develop inclusion complexes based on ß-CD and AITC as relative humidity-responsive agents, which can be used in the design of active food packaging materials. Methods: Two different ß-CD:AITC inclusion complexes (2:1 and 1:1 molar ratios) were obtained by the co-precipitation method. Entrapment efficiency was determined by gas chromatography, while inclusion complexes were characterized through thermal, structural, and physicochemical techniques. Antifungal capacity of inclusion complexes was determined in a headspace system. Furthermore, the AITC release from inclusion complexes to headspace at different percentages of relative humidity was evaluated by gas chromatography, and this behavior was related with molecular dynamic studies. Key Findings and Conclusions: The entrapment efficiency of inclusion complexes was over to 60%. Two coexisting structures were proposed for inclusion complexes through spectroscopic analyses and molecular dynamic simulation. The water sorption capacity of inclusion complexes depended on relative humidity, and they exhibited a strong fungicide activity against Botrytis cinerea. Furthermore, the AITC release to headspace occurred in three stages, which were related with changes in ß-CD conformational structure by water sorption and the presence of the different coexisting structures. In addition, a strong influence of relative humidity on AITC release was evidenced. These findings demonstrate that ß-CD:AITC inclusion complexes could be used as potential antifungal agents for the design of food packaging materials, whose activity would be able to respond to relative humidity changes.

13.
Compr Rev Food Sci Food Saf ; 19(4): 1760-1776, 2020 07.
Article in English | MEDLINE | ID: mdl-33337105

ABSTRACT

Nanotechnology is considered a highly valued technology to reduce the current environmental problem that is derived from plastic accumulation. The need to recycle and reuse packaging materials is essential to create a sustainable society towards a circular economy. However, the reprocessing of polymers leads to the deterioration of their characteristic mechanical, optical, thermal, and barrier properties due to the degradation of their polymeric chains. When recycled polymers are reinforced with nanoadditives, aforementioned properties improve and their use in the circular economy is more viable. In this review, different types of nanoadditives and recent advances in the development of recycled polymer nanocomposites reinforced with nanoadditives will be presented. In addition, there is a description of two research topics of current interest, recyclability of nanocomposites and safety for food packaging applications. Recyclability of nanocomposites requires a study that includes the nature of the polymer matrix, the type of polymer and the concentration of nanofiller, the morphology, the presence of additives, and the conditions of the thermal-mechanical cycles. Finally, safety section is dedicated to clarify the migration process in nanoreinforced-recycled polymers in order to assess their safety for food contact applications.


Subject(s)
Food Packaging , Nanocomposites/chemistry , Polymers/chemistry , Food Safety , Recycling
14.
Polymers (Basel) ; 12(6)2020 May 29.
Article in English | MEDLINE | ID: mdl-32486086

ABSTRACT

A new active coating was developed by using Cucumis metuliferus fruit extract as antioxidant additive with the aim of obtaining an easy way to functionalize low-density polyethylene (LDPE) films for food packaging applications. Thus, an extraction protocol was first optimized to determine the total phenolic compounds and the antioxidant activity of CM. The aqueous CM antioxidant extract was then incorporated into cellulose acetate (CA) film-forming solution in different concentrations (1, 3 and 5 wt.%) to be further coated in corona-treated LDPE to obtain LDPE/CA-CM bilayer systems. CA and CA-CM film-forming solutions were successfully coated onto the surface of LDPE, showing good adhesion in the final bilayer structure. The optical, microstructural, thermal, mechanical and oxygen barrier performance, as well as the antioxidant activity, were evaluated. The active coating casted onto the LDPE film did not affect the high transparency of LDPE and improved the oxygen barrier performance. The antioxidant effectiveness of bilayer packaging was confirmed by release studies of Cucumis metuliferus from the cellulose acetate layer to a fatty food simulant. Finally, the LDPE/CA-CM active materials were also tested for their application in minimally processed fruits, and they demonstrated their ability to reduce the oxidation process of fresh cut apples. Thus, the obtained results suggest that CA-CM-based coating can be used to easily introduce active functionality to typically used LDPE at industrial level and enhance its oxygen barrier, without affecting the high transparency, revealing their potential application in the active food packaging sector to extend the shelf-life of packaged food by prevention of lipid oxidation of fatty food or by prevention fruit browning.

15.
Crit Rev Food Sci Nutr ; 60(8): 1290-1301, 2020.
Article in English | MEDLINE | ID: mdl-30729794

ABSTRACT

The scCO2-assisted impregnation process has arisen as an effective method to impregnate solid materials. Its multiple advantages include high diffusion, it allows to obtain free-solvent materials and to operate under low temperatures, which permits to process thermolabile solutes. These characteristics have allowed its application at industrial scale for the impregnation of wood with fungicides and in the last years for textile dyeing. Meanwhile, other numerous applications are still being studied at laboratory scale. One potential field of application corresponds to the food-related industry, which includes the use of scCO2-assisted impregnation process to develop active materials for food packaging and to generate food-grade materials loaded with nutraceuticals for functional food applications. In this framework, this article summarizes the advantages and the main drawbacks with the scCO2-assisted impregnation process. The effect of the processing variables of the scCO2-assisted impregnation process is discussed in terms of the incorporation of active compounds within polymer structures. Including the principles and description of the process and a review of the investigated systems for a better understanding.


Subject(s)
Carbon Dioxide/chemistry , Food Packaging , Functional Food , Polymers/chemistry , Solvents/chemistry
16.
Food Res Int ; 121: 127-135, 2019 07.
Article in English | MEDLINE | ID: mdl-31108733

ABSTRACT

Inclusion complexes based on ß-cyclodextrin (ß-CD) and antimicrobial compounds, were prepared by co-precipitation method, and characterized by entrapment efficiency (EE), thermal analysis, X-ray diffraction, 1H NMR spectroscopy, and water sorption. In addition, experiments associated to evaluate the effect of relative humidity on the release of active compounds and antifungal tests were performed. The analysis evidenced the encapsulation of active compounds into the ß-CD structure with EE of 91 ±â€¯4.1% and 66 ±â€¯2.1% for ß-CD/cinnamaldehyde and ß-CD/eugenol complexes, respectively. Additionally, high relative humidities favored the release of active compounds from inclusion complexes. On the other hand, inclusion complexes were able to control the growth of B. cinerea, which was evidenced by a reduction of its mycelialradial growth. Finally, specific interactions between the active compounds and ß-CD were evaluated through molecular dynamics simulation techniques. According to the obtained results, these complexes could be applied as additives in the design of antifungal packaging.


Subject(s)
Antifungal Agents/chemistry , Oils, Volatile/chemistry , beta-Cyclodextrins/chemistry , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/metabolism , Acrolein/pharmacology , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Botrytis/drug effects , Drug Compounding , Eugenol/chemistry , Eugenol/metabolism , Eugenol/pharmacology , Molecular Docking Simulation , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , beta-Cyclodextrins/metabolism
17.
Food Res Int ; 99(Pt 1): 650-659, 2017 09.
Article in English | MEDLINE | ID: mdl-28784528

ABSTRACT

Supercritical impregnation was used to incorporate a natural compound with antibacterial activity into biopolymer-based films to develop active food packaging materials. Impregnation tests were carried out under two pressure conditions (9 and 12MPa), and three depressurization rates (0.1, 1 and 10MPamin-1) in a high-pressure cell at a constant temperature equal to 40°C. Cinnamaldehyde (Ci), a natural compound with proven antimicrobial activity, was successfully incorporated into poly(lactic acid) films (PLA) using supercritical carbon dioxide (scCO2), with impregnation yields ranging from 8 to 13% w/w. Higher pressure and slower depressurization rate seem to favor the Ci impregnation. The incorporation of Ci improved thermal, structural and mechanical properties of the PLA films. Impregnated films were more flexible, less brittle and more resistant materials than neat PLA films. The tested samples showed strong antibacterial activity against the selected microorganisms. In summary, this study provides an innovative route to the development of antibacterial biodegradable materials, which could be used in a wide range of applications of active food packaging.


Subject(s)
Acrolein/analogs & derivatives , Anti-Bacterial Agents , Biopolymers/chemistry , Food Packaging/methods , Polyesters , Food Packaging/instrumentation , Permeability , Pressure
18.
Food Sci Biotechnol ; 26(6): 1763-1772, 2017.
Article in English | MEDLINE | ID: mdl-30263716

ABSTRACT

The release of microencapsulated natural antimicrobial (AM) agents (thymol and carvacrol) from two encapsulating matrixes [maltodextrin (MD) and soy protein (SP)] were evaluated for possible use in food packaging coatings. Microcapsules were prepared by oil-in-water (O/W) emulsions at different concentrations (10, 20% for MD and 2, 5% for SP). High encapsulation efficiency ranged from 96 to 99.95% for MD and 93.1 to 100% for SP, with average microcapsule diameters that ranged from 17 to 27.5 and 18.8 to 38 µm, respectively. The release rate with 20% MD-thymol [20MD-T] was faster than with 10% MD-thymol [10MD-T]. Similar results were obtained for carvacrol with the same concentration of MD. Korsmeyer-Peppas and Weibull mathematical models were successfully fitted to the release of the AM agents, describing the Fickian diffusion release of the components. Different release rates were obtained as a function of the chemical nature of the encapsulation material and its concentration.

19.
Carbohydr Polym ; 136: 1052-60, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26572446

ABSTRACT

Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application.


Subject(s)
Antioxidants/chemistry , Food Packaging/methods , Methylcellulose/chemistry , Oxalidaceae/chemistry , Plant Extracts/chemistry , Cross-Linking Reagents/chemistry , Glutaral/chemistry , Hydrophobic and Hydrophilic Interactions
20.
Food Chem ; 196: 968-75, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26593579

ABSTRACT

An important issue in food technology is that antimicrobial compounds can be used for various applications, such as the development of antimicrobial active packaging materials. Yet most antimicrobial compounds are volatile and require protection. In the present study, the inclusion complexes of 2-nonanone (2-NN) with ß-cyclodextrin (ß-CD), were prepared by a co-precipitation method. Entrapment efficiency (EE), thermal analysis (DSC and TGA), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), sorption isotherms and antifungal activity were evaluated for the characterization of the inclusion complex (ß-CD:2-NN). A higher EE was obtained (34.8%) for the inclusion complex 1:0.5 than for other molar rates. Both DSC and TGA of the inclusion complexes showed the presence of endothermic peaks between 80 °C and 150 °C, attributed to a complexation phenomenon. Antimicrobial tests for mycelial growth reduction under atmospheric conditions proved the fungistatic behaviour of the inclusion complexes against Botrytis cinerea.


Subject(s)
Ketones/chemistry , Oils, Volatile/chemistry , beta-Cyclodextrins/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...