Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(11): 113601, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38563952

ABSTRACT

Coherent control of Rydberg atoms near dielectric surfaces is a major challenge due to the large sensitivity of Rydberg states to electric fields. We demonstrate coherent single-atom operations and two-qubit entanglement as close as 100 µm from a nanophotonic device. Using the individual atom control enabled by optical tweezers to study the spatial and temporal properties of the electric field from the surface, we employ dynamical decoupling techniques to characterize and cancel the electric-field noise with submicrosecond temporal resolution. We further use entanglement-assisted sensing to accurately map magnitude and direction of electric-field gradients on a micrometer scale. Our observations open a path for integration of Rydberg arrays with micro- and nanoscale devices for applications in quantum networking and quantum information science.

2.
Phys Rev Lett ; 128(22): 223202, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35714242

ABSTRACT

We use lithium-6 atoms in an optical tweezer array to realize an eight-site Fermi-Hubbard chain near half filling. We achieve single site detection by combining the tweezer array with a quantum gas microscope. By reducing disorder in the energy offsets to less than the tunneling energy, we observe Mott insulators with strong antiferromagnetic correlations. The measured spin correlations allow us to put an upper bound on the entropy of 0.26(4)k_{B} per atom, comparable to the lowest entropies achieved with optical lattices. Additionally, we establish the flexibility of the tweezer platform by initializing atoms on one tweezer and observing tunneling dynamics across the array for uniform and staggered 1D geometries.

3.
Phys Rev X ; 11(2)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-36451802

ABSTRACT

We induce strong nonlocal interactions in a 2D Fermi gas in an optical lattice using Rydberg dressing. The system is approximately described by a t - V model on a square lattice where the fermions experience isotropic nearest-neighbor interactions and are free to hop only along one direction. We measure the interactions using many-body Ramsey interferometry and study the lifetime of the gas in the presence of tunneling, finding that tunneling does not reduce the lifetime. To probe the interplay of nonlocal interactions with tunneling, we investigate the short-time-relaxation dynamics of charge-density waves in the gas. We find that strong nearest-neighbor interactions slow down the relaxation. Our work opens the door for quantum simulations of systems with strong nonlocal interactions such as extended Fermi-Hubbard models.

4.
Science ; 363(6425): 379-382, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30523078

ABSTRACT

Strong interactions in many-body quantum systems complicate the interpretation of charge transport in such materials. To shed light on this problem, we study transport in a clean quantum system: ultracold lithium-6 in a two-dimensional optical lattice, a testing ground for strong interaction physics in the Fermi-Hubbard model. We determine the diffusion constant by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity by using the Nernst-Einstein relation. That resistivity exhibits a linear temperature dependence and shows no evidence of saturation, two characteristic signatures of a bad metal. The techniques we developed in this study may be applied to measurements of other transport quantities, including the optical conductivity and thermopower.

5.
Science ; 357(6358): 1385-1388, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28963252

ABSTRACT

The interplay of strong interactions and magnetic fields gives rise to unusual forms of superconductivity and magnetism in quantum many-body systems. Here, we present an experimental study of the two-dimensional Fermi-Hubbard model-a paradigm for strongly correlated fermions on a lattice-in the presence of a Zeeman field and varying doping. Using site-resolved measurements, we revealed anisotropic antiferromagnetic correlations, a precursor to long-range canted order. We observed nonmonotonic behavior of the local polarization with doping for strong interactions, which we attribute to the evolution from an antiferromagnetic insulator to a metallic phase. Our results pave the way to experimentally mapping the low-temperature phase diagram of the Fermi-Hubbard model as a function of both doping and spin polarization, for which many open questions remain.

6.
Phys Rev Lett ; 113(6): 065301, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-25148332

ABSTRACT

We observe a long-lived solitary wave in a superfluid Fermi gas of (6)Li atoms after phase imprinting. Tomographic imaging reveals the excitation to be a solitonic vortex, oriented transverse to the long axis of the cigar-shaped atom cloud. The precessional motion of the vortex is directly observed, and its period is measured as a function of the chemical potential in the BEC-BCS crossover. The long period and the correspondingly large ratio of the inertial to the bare mass of the vortex are in good agreement with estimates based on superfluid hydrodynamics that we derive here using the known equation of state in the BEC-BCS crossover.

SELECTION OF CITATIONS
SEARCH DETAIL
...