Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(15): 24785-24795, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475297

ABSTRACT

Optical parametric chirped-pulse amplification (OPCPA) using high-energy Nd:glass lasers has the potential to produce ultra-intense pulses (>1023 W/cm2). We report on the performance of the final high-efficiency amplifier in an OPCPA system based on large-aperture (63 × 63-mm2) partially deuterated potassium dihydrogen phosphate (DKDP) crystals. The seed beam (180-nm bandwidth, 110 mJ) was provided by the preceding OPCPA stages. A maximum pump-to-signal conversion efficiency of 41% and signal energy up to 13 J were achieved with a 52-mm-long DKDP crystal due to the flattop super-Gaussian pump beam profile and flat-in-time pulse shape.

2.
Rev Sci Instrum ; 90(5): 053001, 2019 May.
Article in English | MEDLINE | ID: mdl-31153238

ABSTRACT

The Dynamic Compression Sector (DCS) laser is a 100-J ultraviolet Nd:glass system designed and built by the Laboratory for Laser Energetics for experimental research at the DCS located at the Advanced Photon Source (Argonne National Laboratory). Its purpose is to serve as a shock driver to study materials under extreme dynamic pressures. It was designed to deposit energy within a uniformly illuminated 500-µm spot on target, with additional optics provided to implement spot sizes of 250 and 1000 µm. Designed after larger-scale glass lasers such as OMEGA and the National Ignition Facility, the laser consists of a fiber front end with interferometer-based pulse shaping, a Nd:glass regenerative amplifier, a four-pass rod amplifier, and a 15-cm glass disk amplifier, through which six passes are made in a bowtie geometry. The output is frequency tripled from 1053 to 351 nm by using a pair of type-II phase-matched KDP crystals, with a third to increase conversion bandwidth. The super-Gaussian spot in the far field is achieved with a distributed phase plate and a 1-m aspherical focusing lens. Beam smoothing is achieved by smoothing by spectral dispersion and polarization smoothing, resulting in a root-mean-square variation in intensity on target of ±8.7%.

3.
Appl Opt ; 58(2): 234-243, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30645299

ABSTRACT

The effects of pulse compressor grating misalignment on pulse duration and focusability are simulated for chirped-pulse-amplification systems of varying bandwidths, beam sizes, groove densities, and incident angles. Tilt-alignment tolerances are specified based on a 2 drop in focused intensity, illustrating how tolerances scale with bandwidth and compressor beam size, which scales with energy when transformed via known grating damage thresholds. Grating-alignment tolerance scaling with grating groove density and incident/diffracted angles is investigated and applied to compressor design. A correlation between grating tip and in-plane rotation error sensitivity is defined and used to compensate residual out-of-plane angular dispersion, even for ultra-broadband pulses. Simulation of dispersion compensation methods after grating misalignment is shown to mitigate pulse lengthening, limited by temporal contrast degradation and higher-order effects for ultrabroad bandwidths.

4.
Appl Opt ; 47(27): 4959-64, 2008 Sep 20.
Article in English | MEDLINE | ID: mdl-18806858

ABSTRACT

An alignment method for pulse-compression gratings that obviates the need to place the gratings at normal incidence to remove grating-tip error is proposed. Grating-tip and groove-orientation errors are removed using two alignment wavelengths in a manner analogous to a laser-beam pointing and centering procedure entirely at the respective Littrow angles for the two wavelengths. By choosing wavelengths with Littrow angles close to the use angle of the grating, the residual tip and groove-orientation errors that may be introduced when the grating mount is tilted to its use angle are reduced. This method has greatly facilitated the alignment of the OMEGA Extended Performance (EP) large-aperture pulse compressors, thereby reducing residual pulse-front tilt caused by nonparallel gratings. OMEGA EP is a high-energy, petawatt-class laser at the University of Rochester's Laboratory for Laser Energetics. A numerical simulation of the alignment procedure is presented.

5.
Opt Express ; 15(15): 9562-74, 2007 Jul 23.
Article in English | MEDLINE | ID: mdl-19547305

ABSTRACT

A tiled-grating assembly with three large-scale gratings is developed with real-time interferometric tiling control for the OMEGA EP Laser Facility. An automatic tiling method is achieved and used to tile a three-tile grating assembly with the overall wavefront reconstructed. Tiling-parameters sensitivity and focal-spot degradation from all combined tiling errors are analyzed for a pulse compressor composed of four such assemblies.

6.
Opt Lett ; 28(14): 1245-7, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12885035

ABSTRACT

High-conversion-efficiency, high-stability optical parametric chirped-pulse amplification is demonstrated with a spatiotemporally shaped pump laser system. Broadband 5-mJ pulses are produced at a 5-Hz repetition rate with a pump-to-signal conversion efficiency of 29% and energy stability better than 2% rms. To our knowledge this is the highest conversion efficiency and stability achieved in an optical parametric chirped-pulse amplification system.

7.
Opt Lett ; 25(16): 1171-3, 2000 Aug 15.
Article in English | MEDLINE | ID: mdl-18066157

ABSTRACT

We report the observation of nematic director distortions around the diffracting element of a liquid-crystal point-diffraction interferometer. The observed director field distortions are similar to those reported in the literature for other liquid-crystal guest-host systems. We show how the alignment distortion changes as a function of the voltage applied to the liquid-crystal cell, leading to an observed phase-shift error. Tailoring of surface anchoring conditions and judicious choice of phase-shift algorithm can improve device accuracy.

8.
Opt Lett ; 23(12): 927-9, 1998 Jun 15.
Article in English | MEDLINE | ID: mdl-18087386

ABSTRACT

The dual-tripler scheme for enhancing the bandwidth of third-harmonic generation proposed by Eimerl et al. [Opt. Lett. 22, 1208 (1997)] is experimentally demonstrated for the conversion of 1054-nm radiation to 351 nm. It is shown that the spacing between the triplers must be carefully controlled. The results are in excellent agreement with theory and indicate that fusion lasers can be frequency tripled with a threefold increase in bandwidth.

SELECTION OF CITATIONS
SEARCH DETAIL
...