Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 63(6): A52-A58, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38437382

ABSTRACT

Removal of fuel debris is planned to start at Unit 2 of the Fukushima Daiichi Nuclear Power Plant. During the removal, it is desirable to distinguish fuel debris from radioactive wastes and to sort the fuel debris accordingly to the amounts of nuclear material contained. Muon scattering tomography invented at Los Alamos in the early 2000s is highly sensitivity to high-atomic-number materials such as uranium. A muon scanner to sort the debris is designed and currently in production. One of the challenges is to operate the muon scanner in the presence of high γ-ray radiations from the debris: muon-event-identification electronics and a muon-tracking algorithm in the presence of high γ-ray radiations were developed.

3.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37526516

ABSTRACT

Cosmic ray muons are massive, charged particles created from high energy cosmic rays colliding with atomic nuclei in Earth's atmosphere. Because of their high momenta and weak interaction, these muons can penetrate through large thicknesses of dense material before being absorbed, making them ideal for nondestructive imaging of objects composed of high-Z elements. A Giant Muon Tracker with two horizontal 8 × 6 in.2 and two vertical 6 × 6 in.2 modules of drift tubes was used to measure muon tracks passing through samples placed inside the detector volume. The experimental results were used to validate a Monte Carlo simulation of the Giant Muon Tracker. The imaging results of simulated samples were reconstructed and compared with those from the experiment, which showed excellent agreement.

4.
Talanta ; 260: 124587, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37137176

ABSTRACT

A method has been developed to purify and measure platinum radioisotopes in the presence of fission products and environmental constituents. The method uses a combination of cation exchange and anion exchange chromatography and selective precipitation steps to remove other radioisotopes from the sample. The addition of stable platinum carrier allows for a gravimetric determination of the chemical yield of the procedure. Overall, the method is fast, simple, and potentially applicable for rapid turnaround of unknown samples. Using this method, multiple platinum radioisotopes were measured in two different irradiation experiments. The measured ratios of the platinum radioisotopes clearly reflect the neutron spectrum of the irradiation, suggesting that platinum radioisotopes could be valuable signatures in nuclear forensic analyses.

5.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30530532

ABSTRACT

Long-term monitoring of spent fuel stored in dry cask storage is currently achieved through the use of seals and surveillance. Muon tomography can provide direct imaging that may be useful in cases where what is known as Continuity of Knowledge (CoK) has been lost using the former methods. Over the past several years, a team from Los Alamos National Laboratory has been studying the use of muon scattering and stopping to examine spent fuel in dry cask storage. Data taken on a partially loaded Westinghouse MC-10 fuel cask have demonstrated that muon scattering radiography can detect missing fuel assemblies. A model, validated by this data, shows that tomographic reconstructions of the fuel can be obtained in relatively short exposures. Model fitting algorithms have been developed for dealing with datasets with limited angular that appear to work well. Here we show that muon tomography can provide a fingerprint of a loaded fuel cask, because of its sensitivity to both the density and atomic charge of the spent fuel, and that it is sensitive to many diversion scenarios.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

6.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30530536

ABSTRACT

Imaging subsurface rock formations or geological objects like oil and gas reservoirs, mineral deposits, cavities or even magmatic plumbing systems under active volcanoes has been for many years a major quest of geoscientists. Since these subsurface objects cannot be observed directly, different indirect methods have been developed. These methods are all based on variations of certain physical properties of the subsurface materials that can be detected from the ground surface or from boreholes. To determine the density distribution, a new imaging technique using cosmic-ray muon detectors deployed in a borehole has been developed and a first prototype of a borehole muon detector successfully tested. In addition to providing a static image of the subsurface density in three dimensions (or three-dimensional tomography), borehole muography can also inform on the variations of density with time, which recently became of major importance with the injection of large volumes of fluids, mainly water and CO2, in porous subsurface reservoirs (e.g. aquifer storage and recovery, wastewater disposal, enhanced oil recovery and carbon sequestration). This raises several concerns about the risk of leakage and the mechanical integrity of the reservoirs. Determining the field scale induced displacement of fluids by geophysical methods like muography is thus a priority.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

SELECTION OF CITATIONS
SEARCH DETAIL
...