Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 26(35): 36007-36022, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31713132

ABSTRACT

Climate change has affected rainfall patterns in tropical regions, where simultaneous demands for water and energy, habitat loss, declining biodiversity, and spread of invasive species have reflected a rapidly changing world underway. In Brazil, hydropower generation accounts for 64% of the electricity matrix, which presently includes 1007 small hydropower plants (SHPs) having many others under construction or planned. This paper aimed to evaluate changes in water quality, plankton communities, and benthic macroinvertebrates during dam construction, filling, and the first year of operation of a SHP. Suspended solids, turbidity, and silica were variables that highlighted the impact of this construction on the river. Fast changes in water quality (increases in calcium, chlorides, and nitrate) and on aquatic communities (i.e. euglenophyceans and testate amoebae increased in numbers) were detected during the filling phase. Following SHP construction, the concentrations of metals and total phosphorus tended to decrease. Two striking findings observed in the aquatic communities from the riverine conditions to the new lake were the increase in picocyanobacteria abundance, expanding population stocks throughout the river basin, and the constant presence of the invasive mollusc Corbicula fluminea in the macroinvertebrate assemblage, revealing once again its resistance to environmental variability. The lake soon became a natural trap for ions from the drainage basin, as revealed by the increase in electrical conductivity, ammonium, potassium, and magnesium concentrations and the abundance of cyanobacteria, highlighting the need for watershed management to improve ecological conditions in the lake.


Subject(s)
Lakes , Power Plants , Animals , Biodiversity , Brazil , Climate Change , Corbicula , Cyanobacteria , Ecosystem , Plankton , Rivers , Water Quality
2.
Environ Technol ; 38(7): 816-826, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27448747

ABSTRACT

This study aimed to evaluate the ammonia-nitrogen removal by aluminosilicates, using both standard solutions as pretreated landfill leachate. Three types of commercial clays and one commercial zeolite were initially tested using standard solution; however, only one clay with the best removability and the zeolite were tested with pretreated leachate. The chosen clay sorption capacity with the standard solution reached 83%, while with the pretreated leachate solution has reached 95% and zeolites have reached, respectively, a removal of 73% and 81%. For this two adsorbents' studies of equilibrium and kinetic of the sorption were also performed. The Langmuir model was more adequate to describe the ion exchange equilibrium and the sorption mechanism fit the pseudo-second-order kinetic model. Moreover, the pretreatment used on leachate proved to be essential not only for ammonium detection in solution, but also to facilitate its sorption in aluminosilicates. This alternative of ammonia-nitrogen removal also generates a product derived from treatment that can be used as agricultural feedstock in the form of fertilizer.


Subject(s)
Aluminum Silicates/chemistry , Ammonia/chemistry , Nitrogen/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Kinetics , Zeolites/chemistry
3.
Ecotoxicol Environ Saf ; 112: 132-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25463863

ABSTRACT

Microcystin (MC) accumulation and depuration in environmentally exposed tilapia (Oreochromis niloticus) at a chronically contaminated eutrophic lagoon was studied. This is one of the scarce reports on microcystin accumulation in bile of environmentally exposed fish, and gonad MC accumulation in the field, in contrast to laboratory exposure experiments. Results show that preferential MC accumulation in the environment occurred in tilapia fish muscle, followed by gonads, liver and, finally, bile. Biliary MC excretion in in situ conditions indicates elimination from the body to a certain degree. High gonad MC bioaccumulation is of concern, since this could indicate potential reproductive problems in this species. This study also demonstrated that tilapia shows similar oxidative stress responses (in the form of reduced glutathione, GSH) in the environment as those observed in laboratory exposed fish. MC dietary intake values for tilapia muscle and liver were above the limits imposed by international legislations, indicating that the local human population should exercise care when ingesting this species as a part of their diet and that human ingestion of MC-contaminated samples should be carefully monitored.


Subject(s)
Cichlids/metabolism , Environmental Exposure , Glutathione/metabolism , Microcystins/toxicity , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Animals , Brazil , Environmental Monitoring , Estuaries , Eutrophication , Microcystins/analysis , Microcystins/metabolism , Tissue Distribution , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL