Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892004

ABSTRACT

Vedolizumab (VDZ) is used for treating inflammatory bowel disease (IBD) patients. A study investigating colonic epithelial barrier function ex vivo following VDZ is lacking. This work aims to evaluate ex vivo the colonic epithelial barrier function in IBD patients at baseline and during VDZ treatment, and to investigate the relationships between barrier function and clinical parameters. Colonic specimens were obtained from 23 IBD patients before, and at 24 and 52 weeks after VDZ treatment, and from 26 healthy volunteers (HV). Transepithelial electrical resistance (TEER, permeability to ions) and paracellular permeability were measured in Ussing chambers. IBD patients showed increased epithelial permeability to ions (TEER, 13.80 ± 1.04 Ω × cm2 vs. HV 20.70 ± 1.52 Ω × cm2, p < 0.001) without changes in paracellular permeability of a 4 kDa probe. VDZ increased TEER (18.09 ± 1.44 Ω × cm2, p < 0.001) after 52 weeks. A clinical response was observed in 58% and 25% of patients at week 24, and in 62% and 50% at week 52, in ulcerative colitis and Crohn's disease, respectively. Clinical and endoscopic scores were strongly associated with TEER. TEER < 14.65 Ω × cm2 predicted response to VDZ (OR 11; CI 2-59). VDZ reduces the increased permeability to ions observed in the colonic epithelium of IBD patients before treatment, in parallel to a clinical, histological (inflammatory infiltrate), and endoscopic improvement. A low TEER predicts clinical response to VDZ therapy.


Subject(s)
Antibodies, Monoclonal, Humanized , Colon , Inflammatory Bowel Diseases , Intestinal Mucosa , Permeability , Humans , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Male , Female , Adult , Middle Aged , Permeability/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Colon/drug effects , Colon/metabolism , Colon/pathology , Ions/metabolism , Gastrointestinal Agents/pharmacology , Gastrointestinal Agents/therapeutic use , Electric Impedance , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Crohn Disease/drug therapy , Crohn Disease/metabolism , Crohn Disease/pathology , Aged
2.
J Neurogastroenterol Motil ; 27(2): 292-301, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33594008

ABSTRACT

BACKGROUND/AIMS: Impaired intestinal motility seems to play a crucial role in symptomatic uncomplicated diverticular disease (SUDD), although the mechanism is not clear. The aim of the present study is to explore the contractility patterns of colonic smooth muscle strips (MS) and smooth muscle cells (SMCs) and to assess mucosal integrity in SUDD patients. METHODS: MS or SMCs were isolated from specimens of human distal colon of 18 patients undergoing surgery for non-obstructive colonic cancer, among them 9 with SUDD. Spontaneous phasic contractions on strips and morpho-functional parameters on cells were evaluated in basal conditions and in response to acetylcholine (ACh). Mucosal integrity of SUDD colonic biopsies was evaluated by the Ussing Chamber system. Immunohistochemical staining for tight junction protein complex and for Toll-like receptor 4 (TLR4) was performed. RESULTS: Colonic MS of SUDD group showed a significant reduced basal tone and ACh-elicited contraction, compared to the control group (9.5 g and 47.0% in the SUDD group; 14.16 g and 69.0% in the control group; P < 0.05). SMCs of SUDD group showed a maximal contractile response to ACh significantly reduced compared to control group (8.8% vs 16.5%, P < 0.05). SUDD patients displayed lower transepithelial electrical resistance and increased paracellular permeability compared to control group. Immunohistochemical expression of TLR4 was not different in both groups, while tight junction protein complex expression was lower in SUDD patients compared to control group patients. CONCLUSION: It could be hypothesized that in SUDD, in absence of severe inflammation, an increased intestinal mucosal permeability is related to altered colonic motility probably responsible for symptoms genesis.

3.
J Cell Physiol ; 223(2): 442-50, 2010 May.
Article in English | MEDLINE | ID: mdl-20112289

ABSTRACT

Endotoxemia by bacterial lipopolysaccharide (LPS) has been reported to affect gut motility specifically depending on Toll-like receptor 4 activation (TLR4). However, the direct impact of LPS ligation to TLR4 on human smooth muscle cells (HSMC) activity still remains to be elucidated. The present study shows that TLR4, its associated molecule MD2, and TLR2 are constitutively expressed on cultured HSMC and that, once activated, they impair HSMC function. The stimulation of TLR4 by LPS induced a time- and dose-dependent contractile dysfunction, which was associated with a decrease of TLR2 messenger, a rearrangement of microfilament cytoskeleton and an oxidative imbalance, i.e., the formation of reactive oxygen species (ROS) together with the depletion of GSH content. An alteration of mitochondria, namely a hyperpolarization of their membrane potential, was also detected. Most of these effects were partially prevented by the NADPH oxidase inhibitor apocynin or the NFkappaB inhibitor MG132. Finally, a 24 h washout in LPS-free medium almost completely restored morphofunctional and biochemical HSMC resting parameters, even if GSH levels remained significantly lower and no recovery was observed in TLR2 expression. Thus, the exposure to bacterial endotoxin directly and persistently impaired gastrointestinal smooth muscle activity indicating that HSMC actively participate to dysmotility during infective burst. The knowledge of these interactions might provide novel information on the pathogenesis of infection-associated gut dysmotility and further clues for the development of new therapeutic strategies.


Subject(s)
Colitis/complications , Colon/metabolism , Gastrointestinal Motility/physiology , Ileus/microbiology , Myocytes, Smooth Muscle/metabolism , Toll-Like Receptor 4/metabolism , Cells, Cultured , Colitis/physiopathology , Colon/cytology , Colon/physiopathology , Dose-Response Relationship, Drug , Endotoxemia/chemically induced , Endotoxemia/physiopathology , Gastrointestinal Motility/drug effects , Humans , Ileus/physiopathology , Inflammation Mediators/pharmacology , Lipopolysaccharides/pharmacology , Lymphocyte Antigen 96/drug effects , Lymphocyte Antigen 96/metabolism , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/physiology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Toll-Like Receptor 2/drug effects , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/drug effects
4.
Am J Physiol Gastrointest Liver Physiol ; 285(6): G1189-97, 2003 Dec.
Article in English | MEDLINE | ID: mdl-12936911

ABSTRACT

H2O2 stimulates gallbladder muscle contraction and scavengers of free radicals through the generation of PGE2. Oxidative stress causes lipid peroxidation and generation of platelet-activating factor (PAF) or PAF-like lipids. The present studies therefore were aimed at determining whether either one induced by H2O2 mediates the increased generation of PGE2. Dissociated muscle cells of guinea pig gallbladder were obtained by enzymatic digestion. Both PAF-like lipids and PAF-induced muscle contraction was blocked by the PAF receptor antagonist CV-3988. This antagonist also blocked the increased PGE2 production caused by PAF-like lipids or PAF. Actions of PAF-like lipids were completely inhibited by indomethacin, but those of PAF were only partially reduced by indomethacin or by nordihydroguaiaretic acid and completely blocked by their combination. PAF-like lipids-induced contraction was inhibited by AACOCF3 (cystolic phospholipase A2 inhibitor), whereas the actions of PAF were blocked by MJ33 (secretory phospholipase A2 inhibitor). Receptor protection studies showed that pretreatment with PAF-like lipids before N-ethylmaleimide protected the contraction induced by a second dose of PAF-like lipids or PGE2 but not by PAF. In contrast, pretreatment with PAF protected the actions of PAF and PGE2 but not that of PAF-like lipids. Both PAF-like lipids and PAF-induced contractions were inhibited by anti-Galphaq/11 antibody and by inhibitors of MAPK and PKC. In conclusion, PAF-like lipids seem to activate a pathway different from that of PAF probably by stimulating a different PAF receptor subtype.


Subject(s)
Gallbladder/physiology , Lipid Metabolism , Muscle Contraction/physiology , Muscle, Smooth/physiology , Platelet Activating Factor/metabolism , Platelet Activating Factor/pharmacology , Animals , Dinoprostone/biosynthesis , Gallbladder/drug effects , Gallbladder/metabolism , Guinea Pigs , Hydrogen Peroxide/pharmacology , Male , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Oxidants/pharmacology , Platelet Membrane Glycoproteins/physiology , Receptors, G-Protein-Coupled/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...