Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochimie ; 94(3): 662-72, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21971529

ABSTRACT

Adenines downstream of the initiation codon promote protein synthesis; however, some adenine-containing codons (AGA, AGG and AUA) at early positions inhibit protein synthesis when cognate tRNA is exhausted. It has also been reported, although not convincingly, the presence of adenines enhancing mRNA binding to the ribosome. To understand these apparent inconsistencies we analyzed the effect of these codons in mRNA-ribosome binding strength, mRNA stability, the production of peptidyl-tRNA (pep-tRNA) and protein synthesis. Constructs harboring lacZ derivatives were obtained by site directed mutagenesis where tandems of GGG, AGG, AGA, ATA and AAA codons were inserted at codon positions 2-3 and 3-4. Codons containing more adenines, irrespective of being common or rare, (AAA, ATA and AGA) promoted a higher synthesis of ß-galactosidase (ß-gal) in comparison with those rich in guanines (GGG and AGG) in a wild type transcription-translation system. Full-length mRNAs were also detected when the adenine-rich constructs were expressed in wild type cells. Under conditions where the pool of tRNAs is readily exhausted (pep-tRNA hydrolase defective cells), the adenine-rich lacZ derivatives caused a stronger and general inhibition of protein synthesis and cell growth. With the exception of the ATA lacZ derivative, only plasmid constructs containing hungry codons generated pep-tRNA (AGA and to a lesser extent AGG) in Pth defective cells. Codons containing more adenines clearly promoted lacZ mRNA binding to 30S subunit. The GGG lacZ mRNA showed a moderate increase in binding when mRNA secondary structures were disrupted by heating mRNAs before the binding assay which agrees with the lacZ mRNA secondary structures predicted with MFOLD. Altogether, these results indicate that mRNA binding to ribosome plays a major role in the enhancement of translation by adenine-rich codons irrespective of codon usage. This effect is naturally expressed in wild type systems and depends on adenine content, in contrast to the inhibition caused after over-expressing the lacZ derivatives containing rare codons in Pth defective cells.


Subject(s)
Adenine/chemistry , Codon/chemistry , Codon/genetics , Protein Biosynthesis/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer, Amino Acyl/genetics , Ribosome Subunits, Small, Bacterial/metabolism , Protein Biosynthesis/genetics , RNA, Transfer, Amino Acyl/metabolism , Ribosome Subunits, Small, Bacterial/genetics
2.
Can J Microbiol ; 47(1): 72-6, 2001 Jan.
Article in English | MEDLINE | ID: mdl-15049452

ABSTRACT

Cloning of foreign DNA fragments for coding sequence analysis in Escherichia coli usually involves sets of three vectors. To simplify this, we constructed an expression vector named pMFV7 containing three ATG codons in different frames downstream of a Shine-Dalgarno sequence, assuming that the ribosome can use any of the three start codons in an alternative manner. Translation beginning at either of the start codons would drive the expression of any coding fragment cloned downstream. To test the feasibility of this proposal, we cloned DNA fragments of the lacZ gene in each of the possible reading frames downstream from pMFV7 start codons. Sequence analysis of the N-terminus regions around the fusion sites indicates that ribosomes indeed initiate translation at each of the three initiation codons. In one case, levels of beta-galactosidase activity depended largely on the N-terminus of the translation products. We conclude that pMFV7 may be useful for expressing coding sequences regardless of their reading frame.


Subject(s)
Cloning, Molecular/methods , Escherichia coli/genetics , Escherichia coli/physiology , Gene Expression , Genetic Vectors , Codon, Initiator , DNA, Recombinant , Genes, Bacterial , Genes, Reporter , Lac Operon , Peptide Chain Initiation, Translational , Plasmids , Reading Frames , Ribosomes/physiology , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...