Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Fungal Syst Evol ; 1: 169-216, 2018 Jun.
Article in English | MEDLINE | ID: mdl-32490366

ABSTRACT

This study introduces two new families, one new genus, 22 new species, 10 new combinations, four epitypes, and 16 interesting new host and / or geographical records. Cylindriaceae (based on Cylindrium elongatum) is introduced as new family, with three new combinations. Xyladictyochaetaceae (based on Xyladictyochaeta lusitanica) is introduced to accommodate Xyladictyochaeta. Pseudoanungitea gen. nov. (based on P. syzygii) is described on stems of Vaccinium myrtillus (Germany). New species include: Exophiala eucalypticola on Eucalyptus obliqua leaf litter, Phyllosticta hakeicola on leaves of Hakea sp., Setophaeosphaeria citricola on leaves of Citrus australasica, and Sirastachys cyperacearum on leaves of Cyperaceae (Australia); Polyscytalum chilense on leaves of Eucalyptus urophylla (Chile); Pseudoanungitea vaccinii on Vaccinium myrtillus (Germany); Teichospora quercus on branch tissue of Quercus sp. (France); Fusiconidium lycopodiellae on stems of Lycopodiella inundata, Monochaetia junipericola on twig of Juniperus communis, Myrmecridium sorbicola on branch tissues of Sorbus aucuparia, Parathyridaria philadelphi on twigs of Philadelphus coronarius, and Wettsteinina philadelphi on twigs of Philadelphus coronarius (Germany); Zygosporium pseudogibbum on leaves of Eucalyptus pellita (Malaysia); Pseudoanungitea variabilis on dead wood (Spain); Alfaria acaciae on leaves of Acacia propinqua, Dictyochaeta mimusopis on leaves of Mimusops caffra, and Pseudocercospora breonadiae on leaves of Breonadia microcephala (South Africa); Colletotrichum kniphofiae on leaves of Kniphofia uvaria, Subplenodomus iridicola on Iris sp., and Trochila viburnicola on twig cankers on Viburnum sp. (UK); Polyscytalum neofecundissimum on Quercus robur leaf litter, and Roussoella euonymi on fallen branches of Euonymus europaeus (Ukraine). New combinations include: Cylindrium algarvense on leaves of Eucalyptus sp. (Portugal), Cylindrium purgamentum on leaf litter (USA), Cylindrium syzygii on leaves of Syzygium sp. (Australia), Microdochium musae on leaves of Musa sp. (Malaysia), Polyscytalum eucalyptigenum on Eucalyptus grandis × pellita (Malaysia), P. eucalyptorum on leaves of Eucalyptus (Australia), P. grevilleae on leaves of Grevillea (Australia), P. nullicananum on leaves of Eucalyptus (Australia), Pseudoanungitea syzygii on Syzygium cordatum leaf litter (South Africa), and Setophaeosphaeria sidae on leaves of Sida sp. (Brazil). New records include: Sphaerellopsis paraphysata on leaves of Phragmites sp., Vermiculariopsiella dichapetali on leaves of Melaleuca sp. and Eucalyptus regnans, and Xyladictyochaeta lusitanica on leaf litter of Eucalyptus sp. (Australia); Camarosporidiella mackenziei on twigs of Caragana sp. (Finland); Cyclothyriella rubronotata on twigs of Ailanthus altissima, Rhinocladiella quercus on Sorbus aucuparia branches (Germany); Cytospora viticola on stems of Vitis vinifera (Hungary); Echinocatena arthrinioides on leaves of Acacia crassicarpa (Malaysia); Varicosporellopsis aquatilis from garden soil (Netherlands); Pestalotiopsis hollandica on needles of Cupressus sempervirens (Spain), Pseudocamarosporium africanum on twigs of Erica sp. (South Africa), Pseudocamarosporium brabeji on branch of Platanus sp. (Switzerland); Neocucurbitaria cava on leaves of Quercus ilex (UK); Chaetosphaeria myriocarpa on decaying wood of Carpinus betulus, Haplograhium delicatum on decaying Carpinus betulus wood (Ukraine). Epitypes are designated for: Elsinoë mimosae on leaves of Mimosa diplotricha (Brazil), Neohendersonia kickxii on Fagus sylvatica twig bark (Italy), Caliciopsis maxima on fronds of Niphidium crassifolium (Brazil), Dictyochaeta septata on leaves of Eucalyptus grandis × urophylla (Chile), and Microdochium musae on leaves of Musa sp. (Malaysia).

2.
Persoonia ; 37: 106-141, 2016 12.
Article in English | MEDLINE | ID: mdl-28232762

ABSTRACT

The fern flora of the world (Pteridophyta) has direct evolutionary links with the earliest vascular plants that appeared in the late Devonian. Knowing the mycobiota associated to this group of plants is critical for a full understanding of the Fungi. Nevertheless, perhaps because of the minor economic significance of ferns, this niche remains relatively neglected by mycologists. Cercosporoid fungi represent a large assemblage of fungi belonging to the Mycosphaerellaceae and Teratosphaeriaceae (Ascomycota) having cercospora-like asexual morphs. They are well-known pathogens of many important crops, occurring on a wide host range. Here, the results of a taxonomic study of cercosporoid fungi collected on ferns in Brazil are presented. Specimens were obtained from most Brazilian regions and collected over a 7-yr period (2009-2015). Forty-three isolates of cercosporoid and mycosphaerella-like species, collected from 18 host species, representing 201 localities, were studied. This resulted in a total of 21 frond-spotting taxa, which were identified based on morphology, ecology and sequence data of five genomic loci (actin, calmodulin, ITS, LSU and partial translation elongation factor 1-α). One novel genus (Clypeosphaerella) and 15 novel species (Cercospora samambaiae, Clypeosphaerella sticheri, Neoceratosperma alsophilae, N. cyatheae, Paramycosphaerella blechni, Pa. cyatheae, Pa. dicranopteridis-flexuosae, Pa. sticheri, Phaeophleospora pteridivora, Pseudocercospora brackenicola, Ps. paranaensis, Ps. serpocaulonicola, Ps. trichogena, Xenomycosphaerella diplazii and Zasmidium cyatheae) are introduced. Furthermore, 11 new combinations (Clypeosphaerella quasiparkii, Neoceratosperma yunnanensis, Paramycosphaerella aerohyalinosporum, Pa. dicranopteridis, Pa. gleicheniae, Pa. irregularis, Pa. madeirensis, Pa. nabiacense, Pa. parkii, Pa. pseudomarksii and Pa. vietnamensis) are proposed. Finally, nine new host associations are recorded for the following known fungal species: Cercospora coniogrammes, Cercospora sp. Q, Ps. abacopteridicola, Ps. lygodiicola and Ps. thelypteridis.

3.
Persoonia ; 35: 230-41, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26823634

ABSTRACT

Members of the Asterinaceae and Parmulariaceae are obligate biotrophic fungi with a pantropical distribution that grow in direct association with living plant tissues and produce external ascomata and bitunicate asci. These fungi are poorly known, with limited information about their taxonomic position in the Dothideomycetes. Much of what is known is conjectural and based on observation of morphological characters. An assessment of the phylogenetic position of the Asterinaceae and Parmulariaceae is provided based on a phylogenetic analysis of the nrDNA operon (ITS) and the large subunit rDNA (LSU) sequence data obtained from fresh material of selected species collected in Brazil. Three key species were included and epitypified, namely Asterina melastomatis, which is the type species for the type genus of the Asterinaceae; Prillieuxina baccharidincola (Asterinaceae); and Parmularia styracis, which is the type species for the type genus of the Parmulariaceae. An LSU rDNA phylogenetic analysis was performed indicating the correct phylogenetic placement of the Asterinales within the Dothideomycetes. From this initial analysis it is clear that the Parmulariaceae as currently circumscribed is polyphyletic, and that the Asterinaceae and Parmulariaceae are related, which justifies the maintenance of the order Asterinales. Asterotexis cucurbitacearum is recognised as distinct from other Dothideomycetes and placed in the newly proposed family and order (Asterotexiaceae, Asterotexiales), while the higher order phylogeny of Inocyclus angularis remains unresolved. Additionally, Lembosia abaxialis is introduced as a novel species and the phylogenetic placement of the genera Batistinula and Prillieuxina is clarified.

4.
Plant Dis ; 95(12): 1588, 2011 Dec.
Article in English | MEDLINE | ID: mdl-30731981

ABSTRACT

Bidens sulphurea (synonym Cosmos sulphureus) (Asteraceae), commonly known as yellow cosmos, is a native herbaceous species from Mexico that is widely used as an ornamental. It has been introduced in Brazil and has escaped from gardens, becoming a minor weed in ruderal, crop and pasture areas (2). In June 2010, groups of B. sulphurea individuals were found in a garden at the locality of Piúna, municipality of Viçosa (state of Minas Gerais, Brazil), that were severely attacked by gray mold. The disease led to flower rot with dieback of infected peduncles and stems. Plant tissues became brown to grayish brown and were covered by extensive fungal sporulation; in addition, seeds were colonized and destroyed by the fungus. A hyphomycete was regularly found associated with the diseased flowers, which was readily recognized as having a morphology typical of Botrytis cinerea: conidiophores solitary, cylindrical, terminally branched, 15 to 20 µm wide, grayish to olivaceous gray, and smooth; conidiogenous cells polyblastic, subcylindrical to ampulliform, and 120 to 230 × (13-) 14 to 16 (-19) µm; conidia ellipsoid to obovoid, 8 to 12 × 6.5 to 8 (-9) µm, with a discrete hilum at the base, 1 to 2 µm, aseptate, and hyaline. The fungus was isolated in pure culture and inoculation of one isolate on healthy B. suphurea individuals was carried out with a 2.14 × 106 conidia/ml suspension, which was sprayed to runoff onto three plants bearing four to six inflorescences. All plants were left in a moist chamber for 48 h and later transferred to a bench in a greenhouse at 21 ± 3°C. Gray mold symptoms appeared after 10 days that led to rapid and complete necrosis of flowers and peduncles. Infection first appeared on the flowers but progressed downward, leading to top dieback and finally plant death (not seen in the field). Only Botrytis cinerea was obtained in isolations from diseased flowers, demonstrating the pathogenicity of the fungus. A representative sample was deposited in the UFV herbarium (VIC 31602). The only other record of Botrytis cinerea causing gray mold of B. sulphurea is from China (1,3). To our knowledge, this is the first record of Botrytis cinerea causing gray mold on B. sulphurea in Brazil. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Botany and Mycology Laboratory, ARS, UDSA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , 2011. (2) H. Lorenzi and H. M. Souza. Plantas Ornamentais no Brasil. Plantarum, Nova Odessa, Brazil. 1995. (3) Z. Zhang. Flora Fungorum Sinicorum. Vol. 26. Botrytis, Ramularia. Science Press, Beijing, China. 2006.

SELECTION OF CITATIONS
SEARCH DETAIL