Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903801

ABSTRACT

Structural electronics, as well as flexible and wearable devices are applications that are possible by merging polymers with metal nanoparticles. However, using conventional technologies, it is challenging to fabricate plasmonic structures that remain flexible. We developed three-dimensional (3D) plasmonic nanostructures/polymer sensors via single-step laser processing and further functionalization with 4-nitrobenzenethiol (4-NBT) as a molecular probe. These sensors allow ultrasensitive detection with surface-enhanced Raman spectroscopy (SERS). We tracked the 4-NBT plasmonic enhancement and changes in its vibrational spectrum under the chemical environment perturbations. As a model system, we investigated the sensor's performance when exposed to prostate cancer cells' media over 7 days showing the possibility of identifying the cell death reflected in the environment through the effects on the 4-NBT probe. Thus, the fabricated sensor could have an impact on the monitoring of the cancer treatment process. Moreover, the laser-driven nanoparticles/polymer intermixing resulted in a free-form electrically conductive composite that withstands over 1000 bending cycles without losing electrical properties. Our results bridge the gap between plasmonic sensing with SERS and flexible electronics in a scalable, energy-efficient, inexpensive, and environmentally friendly way.

2.
Materials (Basel) ; 16(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36769961

ABSTRACT

The thermochemical properties of Al micropowder after exposure to microwave irradiation were investigated. The Al micropowder was exposed to microwave irradiation in air with a frequency of 2.85 GHz, a power density of 8 W/cm2, and a pulse duration of 25 ns and 3 µs. The thermochemical parameters of the irradiated metal powders were determined by the method of thermal analysis at the heating in air. It was found that an increase in the duration of microwave pulses and irradiation time leads to the thermal annealing of the metal particles, and the thermal processes of melting and sintering begin to dominate over non-thermal processes. The specific thermal effect of irradiated Al micropowder oxidation increases from 7744 J/g to 10,154 J/g in comparison with the unirradiated powder. The modeling of thermal heating processes of aluminum (Al) micropowder under the action of pulsed microwave radiation has been performed. It is shown that with an increase in the duration of microwave pulses and irradiation time, a significant heating of the Al micropowder occurs, leading to its melting and sintering. The results of modeling on the action of microwave radiation on the Al micropowder were compared with experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...