Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Chem ; 80: 374-383, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31103918

ABSTRACT

Colony-stimulating factor 1 receptor is a type III receptor protein tyrosine kinase belonging to PDGFR family. CSF1R signaling is essential for differentiation, proliferation and survival of macrophages. Aberrant expression of CSF1R appears to be an attractive target in several cancer types. Higher expression of CSF1R ligands correlates to tumor progression. CSF1R inhibitors have been shown to suppress cancers. We have attempted an in silico fragment derived drug discovery approach by screening ˜25,000 in-house compounds as potential CSF1R inhibitors. Using FBDD approach we have identified six diverse fragments that exhibit affinity towards hinge region of CSF1R. Some of the fragments 5-nitroindole and 7-azaindole and their derivatives were synthesized for further evaluation. The in silico and in vitro enzyme activity studies reveal moderate inhibition of CSF1R kinase activity by 5-nitroindole and good inhibition by 7-azaindole fragments. Bio and chemiinformatics studies have shown that 7-azaindole compounds have better membrane permeability and enzyme inhibition properties. Molecular docking studies show that the amino acid residues 664-666 in the hinge region of the cytosolic domain of CSF1R to be the preferred region of binding for nitroindole and azaindole derivatives. Further optimization and biological analysis would identify these fragments as potential and promising leads as CSF1R inhibitors.


Subject(s)
Indoles/metabolism , Protein Kinase Inhibitors/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Amino Acid Sequence , Binding Sites , Computational Biology , Drug Design , Humans , Indoles/chemical synthesis , Indoles/chemistry , Molecular Docking Simulation , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Receptor Protein-Tyrosine Kinases/chemistry , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/chemistry , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism
2.
Syst Biol Reprod Med ; 65(2): 105-120, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30550360

ABSTRACT

We aimed to survey the monogenic causes of disorders of sex development (DSD) and thereby its prevalence in India. This study revealed mutations resulting in androgen insensitivity syndrome, 5α-reductase type 2 deficiency, and gonadal dysgenesis were commonly reported. Intriguingly, AR deficits were the most prevalent (32 mutations) and of 11/26 missense mutations were in exons 4-8 (encoding ligand binding domain). The unique features of SRD5A2 defects were p.R246Q (most prevalent) and p.G196S could be mutational hotspots, dual gene defects (p.A596T in AR and p.G196S in SRD5A2) in a patient with hypospadias and novel 8 nucleotide deletion (exon 1) found in a patient with perineal hypospadias. Deficits in SRY, WT1, DHH, NR5A1, and DMRT1 caused 46,XY gonadal dysgenesis. Notably, mutations in AR, SRD5A2, MAMLD1, WT1, and MAP3K1 have led to hypospadias and only one CYP19A1 mutation caused aromatase deficiency was reported to date. Data mining from various databases has not only reinforced the role of well-established genes (e.g., SRY, WT1, DHH, NR5A1, DMRT1, AR, SRD5A2, MAMLD1) involved in DSD but also provided us 12 more potential candidate genes (ACVR1, AMHR2, CTNNB1, CYP11A1, CYP19A1, FGFR2, FGF9, PRKACA, PRKACG, SMAD9, TERT, ZFPM2), which benefit from a close association with the well-established genes involved in DSD and might be useful to screen owing to their direct gene-phenotype relationship or through direct functional interaction. As more genes have been revealed in relation to DSD, we believe ultimately it holds a better scenario for therapeutic regimen. Despite the advances in translational medicine, hospitals are yet to adopt genetic testing and counseling facilities in India that shall have potential impact on clinical diagnosis. Abbreviations: 5α-RD2: 5α-Reductase type 2; AIS: androgen insensitivity syndrome; AMH: antimullerian hormone; AMHR: antimullerian hormone receptor; AR: androgen receptor gene; CAH: congenital adrenal hyperplasia; CAIS: complete AIS; CAH: congenital adrenal hyperplasia; CHH: congenital hypogonadotropic hypogonadism; CXORF6: chromosome X open reading frame 6 gene; CYP19A1: cytochrome P450 family 19 subfamily A member 1 gene; DHT: dihydrotestosterone; DMRT1: double sex and mab-3 related transcription factor 1 gene; DSD: disorders of sexual development; GD: gonadal dysgenesis; HGMD: human gene mutation database; IH: isolated hypospadias; MAMLD1: mastermind like domain containing 1 gene; MIS: mullerian inhibiting substance; NTD: N-terminal domain; OT DSD: ovotesticular DSD; PAIS: partial AIS; SOX9: SRY-related HMG-box 9 gene; SRY: sex-determining region Y gene; STAR: steroidogenic acute regulatory protein gene; SRD5A2: steroid 5 alpha-reductase 2 gene; T DSD: testicular DSD; T: testosterone; WNT4: Wnt family member 4 gene; WT1: Wilms tumor 1 gene; Δ4: androstenedione.


Subject(s)
Disorders of Sex Development/diagnosis , Disorders of Sex Development/genetics , Systems Biology , Disorders of Sex Development/epidemiology , Female , Humans , India/epidemiology , Male , Mutation , Surveys and Questionnaires
3.
Sci Rep ; 7(1): 7325, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28779078

ABSTRACT

Aspergillus is a genus of ubiquitous fungi that are pathologically & therapeutically important. Aspergillus Secondary Metabolites Database (A2MDB) is a curated compendium of information on Aspergillus & its secondary metabolome. A2MDB catalogs 807 unique non-redundantsecondary metabolites derived from 675 Aspergillus species. A2MDB has a compilation of 100 cellular targets of secondary metabolites, 44 secondary metabolic pathways, 150 electron and light microscopy images of various Aspergillus species. A phylogenetic representation of over 2500 strains has been provided. A2MDB presents a detailed chemical information of secondary metabolites and their mycotoxins. Molecular docking models of metabolite-target protein interactions have been put together. A2MDB also has epidemiological data representing Aspergillosis and global occurrence of Aspergillus species. Furthermore a novel classification of Aspergillosis along with 370 case reports with images, were made available. For each metabolite catalogued, external links to related databases have been provided. All this data is available on A2MDB, launched through Indian Institute of Chemical Technology, Hyderabad, India, as an open resource http://www.iictindia.org/A2MDB . We believe A2MDB is of practical relevance to the scientific community that is in pursuit of novel therapeutics.


Subject(s)
Aspergillus/metabolism , Databases, Factual , Metabolome , Metabolomics , Secondary Metabolism , Aspergillosis/diagnosis , Aspergillosis/epidemiology , Aspergillosis/microbiology , Aspergillus/classification , Aspergillus/genetics , Computational Biology/methods , Data Mining , Energy Metabolism , Humans , Metabolic Networks and Pathways , Metabolomics/methods , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...