Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chemosphere ; 275: 129951, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33662722

ABSTRACT

During the summer months, urban areas are literal hot spots of mosquito-borne disease transmission and air pollution. Public health authorities release aerosolized pesticides directly into the atmosphere to help control adult mosquito populations and thereby reduce the threat of diseases, such as Zika Virus. The primary adulticides (i.e. pesticides used to control adult mosquito populations) in Houston, TX are permethrin and malathion. These adulticides are typically sprayed at night using ultra-low volume sprayers. Particulate matter (PM) samples including total suspended and fine PM (PM < 2.5 µm in aerodynamic diameter) were collected at four ground-based sites across Houston in 2013 and include daytime, nighttime, and 24 h samples. Malathion is initially sprayed as coarse aerosol (5-25 µm), but is measured in fine aerosol (<2.5 µm) and coarse aerosol in the urban atmosphere. Particle size is relevant both for deposition velocities and for human exposure. Atmospheric permethrin concentrations measured in nighttime samples peak at 60 ng m-3, while malathion nighttime concentrations peak near 40 ng m-3. Malaoxon, an oxidation product of malathion, was also frequently detected at concentrations >10 ng m-3, indicating significant nighttime oxidation. Based on the loss of malathion and the increase in malaoxon, the atmospheric half-life of malathion in Houston was estimated at <12 h, which was significantly shorter than previous half-life estimates (∼days). Importantly, malaoxon is estimated to be 22-33 times more toxic to humans than malathion. Both the aerosol size and the half-life are critical for mosquito control, human exposure, and risk assessment of these routine pesticides.


Subject(s)
Insecticides , Pesticides , Zika Virus Infection , Zika Virus , Aerosols/analysis , Animals , Humans , Malathion/analysis , Mosquito Control , Particulate Matter/analysis , Permethrin , Pesticides/analysis
2.
Science ; 364(6439): 455-457, 2019 05 03.
Article in English | MEDLINE | ID: mdl-31048485

ABSTRACT

Radical environmental change that provokes population decline can impose constraints on the sources of genetic variation that may enable evolutionary rescue. Adaptive toxicant resistance has rapidly evolved in Gulf killifish (Fundulus grandis) that occupy polluted habitats. We show that resistance scales with pollution level and negatively correlates with inducibility of aryl hydrocarbon receptor (AHR) signaling. Loci with the strongest signatures of recent selection harbor genes regulating AHR signaling. Two of these loci introgressed recently (18 to 34 generations ago) from Atlantic killifish (F. heteroclitus). One introgressed locus contains a deletion in AHR that confers a large adaptive advantage [selection coefficient (s) = 0.8]. Given the limited migration of killifish, recent adaptive introgression was likely mediated by human-assisted transport. We suggest that interspecies connectivity may be an important source of adaptive variation during extreme environmental change.


Subject(s)
Adaptation, Biological/genetics , Environmental Pollution , Evolution, Molecular , Fundulidae/genetics , Population/genetics , Receptors, Aryl Hydrocarbon/genetics , Alleles , Animal Migration , Animals , Gene Flow , Genetic Variation , Polycyclic Aromatic Hydrocarbons/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...