Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 26(21): 16312-24, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20973580

ABSTRACT

Gold based model systems exhibiting the structural versatility of nanoparticle ensembles and being accessible for surface spectroscopic investigations are expected to provide new information about the adsorption of carbon monoxide, a key process influencing the CO oxidation activity of this noble metal in nanoparticulate form. Accordingly, in the present work the interaction of CO is studied with an ion bombardment modified Au(111) surface by means of a combination of photoelectron spectroscopy (XPS and UPS), sum frequency generation vibrational spectroscopy (SFG), and scanning tunneling microscopy (STM). While no adsorption was found on intact Au(111), data collected on the ion bombarded surface at cryogenic temperatures indicated the presence of stable CO adsorbates below 190 K. A quantitative evaluation of the C 1s XPS spectra and the surface morphology explored by STM revealed that the step edge sites created by ion bombardment are responsible for CO adsorption. The identification of the CO binding sites was confirmed by density functional theory (DFT) calculations. Annealing experiments up to room temperature showed that at temperatures above 190 K unstable adsorbates are formed on the surface under dynamic exposure conditions that disappeared immediately when gaseous CO was removed from the system. Spectroscopic data as well as STM records revealed that prolonged CO exposure at higher pressures of up to 1 mbar around room temperature facilitates massive atomic movements on the roughened surface, leading to its strong reordering toward the structure of the intact Au(111) surface, accompanied by the loss of the CO binding capacity.


Subject(s)
Carbon Monoxide/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Adsorption , Ions/chemistry , Molecular Dynamics Simulation , Oxidation-Reduction , Particle Size , Pressure , Spectrum Analysis , Surface Properties
2.
J Phys Chem B ; 110(31): 15417-25, 2006 Aug 10.
Article in English | MEDLINE | ID: mdl-16884263

ABSTRACT

Au-TiO(2) interface on silica support was aimed to be produced in a controlled way by use of Au hydrosol. In method A, the Au colloids were modified by hydrolysis of the water-soluble Ti(IV) bis(ammoniumlactato)dihydroxide (TALH) precursor and then adsorbed on Aerosil SiO(2) surface. In method B, Au sol was first deposited onto the SiO(2) surface and then TALH was adsorbed on it. Regular and high-resolution transmission electron microscopy (TEM and HRTEM) and energy dispersive spectrometry (EDS) analysis allowed us to conclude that, in method A, gold particles were able to retain the precursor of TiO(2) at 1.5 wt % TiO(2) loading, but at 4 wt % TiO(2) content the promoter oxide appeared over the silica surface as well. With method B, titania was detected on silica at each TiO(2) concentration. In Au-TiO(2)/SiO(2) samples, the stability of Au particles against sintering was much higher than in Au/TiO(2). The formation of an active Au-TiO(2) perimeter was proven by the greatly increased CO oxidation activity compared to that of the reference Au/SiO(2).

3.
J Phys Chem B ; 110(17): 8701-14, 2006 May 04.
Article in English | MEDLINE | ID: mdl-16640426

ABSTRACT

Langmuir-Blodgett (LB) monomolecular layers of alkylhydroxamic acids and alkylphosphonic acids on copper and iron substrates have been studied by X-ray photoelectron spectroscopy (XPS) and sum-frequency vibrational spectroscopy. According to the XPS results, the structures of the hydroxamic acid and phosphonic acid Langmuir-Blodgett films are very similar: the thickness of the layer of the hydrocarbon tails is typically 1.9-2.1 nm, while the layer of headgroups is about 0.3-0.35 nm thick. The tilt angle of the carbon chains is estimated to be 20-30 degrees with respect to the sample surface normal, and the molecules are connected to the substrate via their headgroups. Analysis of the P 2p and N 1s lines indicates the presence of deprotonated headgroups. The substrate Cu 2p line includes a component which can be assigned to Cu(2+) ions in a thin Cu(OH)(2) layer. The deposition of LB layers led to significant decrease of the hydroxide-related signal, which indicates that binding of the headgroups to the surface is accompanied by the elimination of water molecules. The sum-frequency spectra also clearly indicate that well-ordered monolayers can be formed by the Langmuir-Blodgett technique. Since the non-resonant background from the metal substrates renders the analysis of the spectra more difficult, model system samples on glass were prepared. It was found that the alkyl chains of the adsorbed acids predominantly adopt the all-trans conformation and form an ordered structure. Upper limits for the mean tilt angle of the terminal methyl groups are approximately 10-20 degrees.

4.
J Am Chem Soc ; 125(14): 4332-7, 2003 Apr 09.
Article in English | MEDLINE | ID: mdl-12670256

ABSTRACT

Nanosize gold particles were prepared by Ar(+) ion implantation of 10-nm thick gold film deposited onto a SiO(2)/Si(100) wafer possessing no catalytic activity in the CO oxidation. Along with size reduction the valence band of the gold particles and the actual size were determined by ultraviolet- and X-ray photoelectron spectroscopy (UPS, XPS) and by transmission electron microscopy (TEM) as well as atomic force microscopy (AFM), respectively. The catalytic activity was determined in the CO oxidation. Energy distribution of the photoelectrons excited from 5d valence band of gold was strongly affected by Ar(+) implantation. This variation was interpreted by the redistribution of the valence band density of states (DOS). The intrinsic catalytic activity of the gold particles increased with decreasing size. When an Au/FeO(x) interface was created by FeO(x) deposition on large gold nanoparticles, a significant increase in the rate of the CO oxidation was observed. These data can be regarded as an experimental verification of the correlation between the catalytic activity and valence band density of states of gold.

SELECTION OF CITATIONS
SEARCH DETAIL
...