Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Synchrotron Radiat ; 31(Pt 3): 447-455, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38530834

ABSTRACT

Hard X-ray absorption spectroscopy is a valuable in situ probe for non-destructive diagnostics of metal sites. The low-energy interval of a spectrum (XANES) contains information about the metal oxidation state, ligand type, symmetry and distances in the first coordination shell but shows almost no dependency on the bridged metal-metal bond length. The higher-energy interval (EXAFS), on the contrary, is more sensitive to the coordination numbers and can decouple the contribution from distances in different coordination shells. Supervised machine-learning methods can combine information from different intervals of a spectrum; however, computational approaches for the near-edge region of the spectrum and higher energies are different. This work aims to keep all benefits of XANES and extend its sensitivity towards the interatomic distances in the first and second coordination shells. Using a binuclear bridged copper complex as a case study and cross-validation analysis as a quantitative tool it is shown that the first 170 eV above the edge are already sufficient to balance the contributions of Cu-O/N scattering and Cu-Cu scattering. As a more general outcome this work highlights the trivial but often overlooked importance of using `longer' energy intervals of XANES for structural refinement and machine-learning predictions. The first 200 eV above the absorption edge still do not require parametrization of Debye-Waller damping and can be calculated within full multiple scattering or finite difference approximations with only moderately increased computational costs.

2.
Sci Rep ; 13(1): 2169, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36750645

ABSTRACT

Lithium-ion batteries based on high-voltage cathode materials, such as LiCoPO4, despite being promising in terms of specific power, still suffer from poor cycle life due to the lower stability of common non-aqueous electrolytes at higher voltages. One way to overcome this issue might be decreasing the working potential of the battery by doping LiCoPO4 by Fe, thus reducing electrolyte degradation upon cycling. However, such modification requires a deep understanding of the structural behavior of cathode material upon lithiation/delithiation. Here we used a combination of operando synchrotron-based XRD and XAS to investigate the dynamics of d-metal local atomic structure and charge state upon cycling of LiCo0.5Fe0.5PO4 mixed d-metal olivine cathode material. Principal components analysis (PCA) of XAS data allowed the extraction of spectra of individual phases in the material and their concentrations. For both Co and Fe two components were extracted, they correspond to fully lithiated and delithiated phases of LixMPO4 (where M = Fe, Co). Thus, we were able to track the phase transitions in the material upon charge and discharge and quantitatively analyze the M2+/M3+ electrochemical conversion rate for both Fe and Co. Rietveld's refinement of XRD data allowed us to analyze the changes in the lattice of cathode material and their reversibility upon (de)lithiation during cycling. The calculation of DFT and Bader charge analysis expects the oxygen redox procedure combined with d-metals redox, which supplements iron charge variations and dominates at high voltages when x < 0.75 in LixCoFePO4.

3.
J Phys Condens Matter ; 35(6)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36368048

ABSTRACT

The bimetallic alloys often outperform their single-component counterparts due to synergistic effects. Being widely known, the Au-Pd alloy is a promising candidate for the novel heterogeneous nanocatalysts. Rational design of such systems requires theoretical simulations under ambient conditions.Ab initioquantum-mechanical calculations employ the density functional theory (DFT) and are limited to the systems with few tens of atoms and short timescales. The alternative solution implies development of reliable atomistic potentials. Among different approaches ReaxFF combines chemical accuracy and low computational costs. However, the development of a new potential is a problem without unique solution and thus requires accurate validation criteria. In this work we construct ReaxFF potential for the Au-Pd system based onab initioDFT calculations for bulk structures, slabs and nanoparticles with different stoichiometry. The validation was performed with molecular dynamics and Monte-Carlo calculations. We present several optimal parametrizations that describe experimental bulk mechanical and thermal properties, atomic order-disorder phase transition temperatures and the resulting ordered crystal structures.

4.
Chem Sci ; 13(35): 10251-10259, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36277633

ABSTRACT

This work establishes structure-property relationships in Ru-based catalytic systems for selective hydrodeoxygenation of ketones to alkenes by combining extensive catalytic testing, in situ X-ray absorption spectroscopy (XAS) under high pressures and temperatures and ex situ XAS structural characterization supported by density functional theory (DFT) calculations. Catalytic tests revealed the difference in hydrogenation selectivity for ketones (exemplified by acetone) or alkenes (exemplified by propene) upon changing the reaction conditions, more specifically in the presence of CO during a pretreatment step. XAS data demonstrated the evolution of the local ruthenium structure with different amounts of Cl/Br and CO ligands. In addition, in the absence of CO, the catalyst was reduced to Ru0, and this was associated with a significant decrease of the selectivity for ketone hydrogenation. For the Ru-bromide carbonyl complex, selectivity towards acetone hydrogenation over propene hydrogenation was explained on the basis of different relative energies of the first intermediate states of each reaction. These results give a complete understanding of the evolution of the Ru species, used for the catalytic valorization of biobased polyols to olefins in ionic liquids, identifying the undesired deactivation routes as well as possibilities for reactivation.

5.
J Phys Chem A ; 125(32): 7080-7091, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34351779

ABSTRACT

A novel approach for the analysis of extended X-ray absorption fine structure (EXAFS) spectra is developed exploiting an inverse machine learning-based algorithm. Through this approach, it is possible to explore and account for, in a precise way, the nonlinear geometry dependence of the photoelectron backscattering phases and amplitudes of single and multiple scattering paths. In addition, the determined parameters are directly related to the 3D atomic structure, without the need to use complex parametrization as in the classical fitting approach. The applicability of the approach, its potential and the advantages over the classical fit were demonstrated by fitting the EXAFS data of two molecular systems, namely, the KAu (CN)2 and the [RuCl2(CO)3]2 complexes.

6.
Phys Chem Chem Phys ; 23(33): 17873-17887, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34378592

ABSTRACT

Modern synchrotron radiation sources and free electron laser made X-ray absorption spectroscopy (XAS) an analytical tool for the structural analysis of materials under in situ or operando conditions. Fourier approach applied to the extended region of the XAS spectrum (EXAFS) allows the estimation of the number of structural and non-structural parameters which can be refined through a fitting procedure. The near edge region of the XAS spectrum (XANES) is also sensitive to the coordinates of all the atoms in the local cluster around the absorbing atom. However, in contrast to EXAFS, the existing approaches of quantitative analysis provide no estimation for the number of structural parameters that can be evaluated for a given XANES spectrum. This problem exists both for the classical gradient descent approaches and for modern machine learning methods based on neural networks. We developed a new approach for rational fit based on principal component descriptors of the spectrum. In this work the principal component analysis (PCA) is applied to a dataset of theoretical spectra calculated a priori on a grid of variable structural parameters of a molecule or cluster. Each principal component of the dataset is related then to a combined variation of several structural parameters, similar to the vibrational normal mode. Orthogonal principal components determine orthogonal deformations that can be extracted independently upon the analysis of the XANES spectrum. Applying statistical criteria, the PCA-based fit of the XANES determines the accessible structural information in the spectrum for a given system.

7.
J Phys Condens Matter ; 33(21)2021 May 03.
Article in English | MEDLINE | ID: mdl-33588394

ABSTRACT

Valence tautomer transition occurs mainly in 3d metalorganic complexes with redox-active ligands and makes them potential candidates for single-molecular switches. The transition occurs under temperature, pressure, or light-induced stimuli and is strongly affected by the intermolecular interactions. However single-crystal x-ray diffraction is not always applicable to such systems when crystal structure is destroyed upon transition or system is studied in the solution. Such an example is bis(o-semiquinonato) cobalt complex with TEMPO-functionalized iminopyridine ancillary ligand. In this work we apply two complementary techniques-ligand-sensitive Fourier transform infrared spectroscopy (FTIR) and metal sensitive Co K-edge x-ray absorption spectroscopy (XAS). In a solid state, a temperature hysteresis of magnetization larger than 40 K was observed upon cyclic cooling-heating. So, the temperature of phase transition upon cooling is about 40 K lower than that upon heating. In solution, the x-ray absorption spectra for high-temperature and low-temperature states were similar to that in the solid form, but the hysteresis was absent. Two methods are can probe valence tautomer transition, but XAS has an advantage for the liquid phase analysis and FTIR has larger sensitivity to the ligand related interactions in solid.

8.
J Phys Chem B ; 123(6): 1324-1331, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30657324

ABSTRACT

Thermal and photoinduced processes accompanying complexation of photochromic spiropyrans (SPP) with Zn ions in acetone solution were characterized by means of UV-vis and X-ray absorption spectroscopies in operando regime. SPP ligands are usually transparent at λ > 350 nm, but after mixing with Zn ions, they produce a stable colored (ε = 32 000-38 000 M-1 cm-1) complex with maximum absorption at 525 nm, which makes them a powerful tool for monitoring metal-ion concentration in solution. The complex revealed fluorescence and photochromic behavior under static irradiation with visible light with constant photoreaction quantum yield across its characteristic absorption band. Zn K-edge X-ray absorption spectra show prominent changes in Zn local atomic structure between free Zn ions and Zn complex. The pump-flow-probe scheme was adapted to measure operando changes in Zn coordination upon light irradiation. Within experimental time resolution, we have determined that 20 µs after light irradiation, Zn ion is released out of the complex. This is the first example of the direct spectroscopic probe of the Zn photorelease from the spiropyran complex.

9.
Sci Rep ; 7(1): 16410, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29180762

ABSTRACT

By means of symmetry analysis, density functional theory calculations, and Monte Carlo simulations we show that goethite, α-FeOOH, is a linear magnetoelectric below its Néel temperature T N = 400 K. The experimentally observed magnetic field induced spin-flop phase transition results in either change of direction of electric polarization or its suppression. Estimated value of magnetoelectric coefficient is 0.57 µC · m-2 · T-1. The abundance of goethite in nature makes it arguably the most widespread magnetoelectric material.

10.
Faraday Discuss ; 201: 265-286, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28621776

ABSTRACT

The exceptional thermal and chemical stability of the UiO-66, -67 and -68 classes of isostructural MOFs [J. Am. Chem. Soc., 2008, 130, 13850] makes them ideal materials for functionalization purposes aimed at introducing active centres for potential application in heterogeneous catalysis. We previously demonstrated that a small fraction (up to 10%) of the linkers in the UiO-67 MOF can be replaced by bipyridine-dicarboxylate (bpydc) moieties exhibiting metal-chelating ability and enabling the grafting of Pt(ii) and Pt(iv) ions in the MOF framework [Chem. Mater., 2015, 27, 1042] upon interaction with PtCl2 or PtCl4 precursors. Herein we extend this functionalization approach in two directions. First, we show that by controlling the activation of the UiO-67-Pt we can move from a material hosting isolated Pt(ii) sites anchored to the MOF framework with Pt(ii) exhibiting two coordination vacancies (potentially interesting for C-H bond activation) to the formation of very small Pt nanoparticles hosted inside the MOF cavities (potentially interesting for hydrogenation reactions). The second direction consists of the extension of the approach to the insertion of Cu(ii), obtained via interaction with CuCl2, and exhibiting interesting redox properties. All materials have been characterized by in situ X-ray absorption spectroscopy at the Pt L3- and Cu K-edges.

SELECTION OF CITATIONS
SEARCH DETAIL
...