Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biometeorol ; 68(6): 1081-1092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38430247

ABSTRACT

As populations and temperatures of urban areas swell, more people face extreme heat and are at increasing risk of adverse health outcomes. Radiation accounts for much of human heat exposure but is rarely used as heat metric due to a lack of cost-effective and accurate sensors. To this end, we fuse the concepts of a three-globe radiometer-anemometer with a cylindrical human body shape representation, which is more realistic than a spherical representation. Using cost-effective and readily available materials, we fabricated two combinations of three cylinders with varying surface properties. These simple devices measure the convection coefficient and the shortwave and longwave radiative fluxes. We tested the devices in a wind tunnel and at fourteen outdoor sites during July 2023's record-setting heat wave in Tempe, Arizona. The average difference between pedestrian-level mean radiant temperature (MRT) measured using research-grade 3-way net radiometers and the three-cylinder setup was 0.4 ± 3.0 °C ( ±  1 SD). At most, we observed a 10 °C MRT difference on a white roof site with extreme MRT values (70 °C to 80 °C), which will be addressed through discussed design changes to the system. The measured heat transfer coefficient can be used to calculate wind speed below 2 m·s-1; thus, the three cylinders combined also serve as a low-speed anemometer. The novel setup could be used in affordable biometeorological stations and deployed across urban landscapes to build human-relevant heat sensing networks.


Subject(s)
Extreme Heat , Radiometry , Humans , Radiometry/instrumentation , Radiometry/methods , Arizona , Wind , Pedestrians
2.
Int J Biometeorol ; 67(5): 865-873, 2023 May.
Article in English | MEDLINE | ID: mdl-37010575

ABSTRACT

Predicting human thermal comfort and safety requires quantitative knowledge of the convective heat transfer between the body and its surrounding. So far, convective heat transfer coefficient correlations have been based only upon measurements or simulations of the average body shape of an adult. To address this knowledge gap, here we quantify the impact of adult human body shape on forced convection. To do this, we generated fifty three-dimensional human body meshes covering 1st to 99th percentile variation in height and body mass index (BMI) of the USA adult population. We developed a coupled turbulent flow and convective heat transfer simulation and benchmarked it in the 0.5 to 2.5 m·s-1 air speed range against prior literature. We computed the overall heat transfer coefficients, hoverall, for the manikins for representative airflow with 2 m·s-1 uniform speed and 5% turbulence intensity. We found that hoverall varied only between 19.9 and 23.2 W·m-2 K-1. Within this small range, the height of the manikins had negligible impact while an increase in the BMI led to a nearly linear decrease of the hoverall. Evaluation of the local coefficients revealed that those also nearly linearly decreased with BMI, which correlated to an inversely proportional local area (i.e., cross-sectional dimension) increase. Since even the most considerable difference that exists between 1st and 99th percentile BMI manikins is less than 15% of hoverall of the average manikin, it can be concluded that the impact of the human body shape on the convective heat transfer is minor.


Subject(s)
Convection , Hot Temperature , Humans , Cross-Sectional Studies , Somatotypes , Computer Simulation , Manikins
SELECTION OF CITATIONS
SEARCH DETAIL
...