Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37630259

ABSTRACT

We investigated the effects of sterically nonrestricted electron-accepting substituents of three isomeric indolocarbazole derivatives on their aggregation-induced emission enhancement, mechanochromic luminescence and thermally activated delayed fluorescence. The compounds are potentially efficient emitters for host-free organic light-emitting diodes. The films of indolocarbazole derivatives exhibit emissions with wavelengths of fluorescence intensity maxima from 483 to 500 nm and photoluminescence quantum yields from 31 to 58%. The ionization potentials of the solid samples, measured by photoelectron emission spectrometry, are in the narrow range of 5.78-5.99 eV. The electron affinities of the solid samples are in the range of 2.99-3.19 eV. The layers of the derivatives show diverse charge-transporting properties with maximum hole mobility reaching 10-4 cm2/Vs at high electric fields. An organic light-emitting diode with a light-emitting layer of neat compound shows a turn-on voltage of 4.1 V, a maximum brightness of 24,800 cd/m2, a maximum current efficiency of 12.5 cd/A and an external quantum efficiency of ca. 4.8%. When the compounds are used as hosts, green electroluminescent devices with an external quantum efficiency of ca. 11% are obtained. The linking topology of the isomeric derivatives of indolo[2,3-a]carbazole and indolo[3,2-b]carbazole and the electron-accepting anchors influences their properties differently, such as aggregation-induced emission enhancement, mechanochromic luminescence, thermally activated delayed fluorescence, charge-transporting, and electroluminescent properties. The derivative indolo[3,2-b]carbazole displays good light-emitting properties, while the derivatives of indolo[2,3-a]carbazole show good hosting properties, which make them useful for application in electroluminescent devices.

2.
ACS Appl Electron Mater ; 5(4): 2227-2238, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37124238

ABSTRACT

The synthesis and optoelectronic properties of four simple-structure thioxanthone derivatives employing thioxanthone as an acceptor unit, coupled with moieties having very different electron-donating abilities such as phenoxazine, 3,6-di-tert-butylcarbazole, 3,7-di-tert-butylphenothiazine, or 2,7-di-tert-butyl-9,9-dimethylacridane, are reported. The compounds form molecular glasses with glass transition temperatures reaching 116 °C. Ionization potentials of the compounds estimated by photoelectron emission method range from 5.42 to 5.74 eV. Thioxanthone derivatives containing 3,6-tert-butylcarbazole or 2,7-di-tert-butyl-9,9-dimethylacridane moieties with weak electron-donating strengths were characterized by bipolar charge transport with relatively close hole and electron mobility values of 6.8 × 10-5/2.4 × 10-5 and 3.1 × 10-5/4.6 × 10-6 cm2/(V s) recorded at 3.6 × 105 V/cm. The other compounds demonstrated hole-transporting properties. The films of thioxanthones containing phenoxazine or 2,7-di-tert-butyl-9,9-dimethylacridane moieties showed efficient thermally activated delayed fluorescence with a photoluminescence quantum yield of up to 50% due to the solid-state luminescence enhancement. Organic-light-emitting diodes containing the synthesized compounds as emitters showed very different external quantum efficiencies (0.9-10.3%) and blue, sky blue, green, or yellow electroluminescence colors, thus reflecting the effects of donor substituents.

3.
Phys Chem Chem Phys ; 25(3): 2411-2419, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36598166

ABSTRACT

Two new twisted intramolecular charge transfer (TICT) donor-π-acceptor compounds were designed by combining a well-known electron acceptor naphthalimide unit with a classic electron donor dimethylaniline through two types of different rigid linkers. The combined steady-state and time-resolved spectroscopy of molecules in solvents of different polarities in comparison to solid-state solvation experiments of doped polymer matrixes of different polarities allowed distinguishing between solvation and conformation determined processes. The photophysical measurements revealed that non-polar solutions possess high fluorescence quantum yields of up to 70% which is a property of pre-twisted/planar molecules in the excited charge transfer (CT) states. The increase of polarity allows tuning the Stokes shift through all the visible wavelength range up to 8601 cm-1 which is accompanied by a three orders of magnitude drop of fluorescence quantum yields. This is a result of the emerged TICT states as dimethylaniline twists to a perpendicular position against the naphthalimide core. The TICT reaction of molecules enables an additional non-radiative excitation decay channel, which is not present if the twisting is forbidden in a rigid polymer matrix. Transient absorption spectroscopy was employed to visualize the excited state dynamics and to obtain the excited state reaction constants, revealing that TICT may occur from both the Franck-Condon region and the solvated pre-twisted/planar CT states. Both molecules undergo the same photophysical processes, however, a longer linker and thus a higher excited state dipole moment determines the faster excited state reactions.

4.
ACS Appl Mater Interfaces ; 14(35): 40158-40172, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36000983

ABSTRACT

Motivated to minimize the effects of solid-state solvation and conformation disorder on emission properties of donor-acceptor-type emitters, we developed five new asymmetric multiple donor-acceptor type derivatives of tert-butyl carbazole and trifluoromethyl benzene exploiting different electron-accepting anchoring groups. Using this design strategy, for a compound containing four di-tert-butyl carbazole units as donors as well as 5-methyl pyrimidine and trifluoromethyl acceptor moieties, small singlet-triplet splitting of ca. 0.03 eV, reverse intersystem crossing rate of 1 × 106 s-1, and high photoluminescence quantum yield of neat film of ca. 75% were achieved. This compound was also characterized by the high value of hole and electron mobilities of 8.9 × 10-4 and 5.8 × 10-4 cm2 V-1 s-1 at an electric field of 4.7 × 105 V/cm, showing relatively good hole/electron balance, respectively. Due to the lowest conformational disorder and solid-state solvation effects, this compound demonstrated very similar emission properties (emission colors) in non-doped and differently doped organic light-emitting diodes (OLEDs). The lowest conformational disorder was observed for the compound with the additional accepting moiety inducing steric hindrance, limiting donor-acceptor dihedral rotational freedom. It can be exploited in the multi-donor-acceptor approach, increasing the efficiency. Using an emitter exhibiting the minimized solid-state solvation and conformation disorder effects, the sky blue OLED with the emitting layer of this compound dispersed in host 1,3-bis(N-carbazolyl)benzene displayed an emission peak at 477 nm, high brightness over 39 000 cd/m2, and external quantum efficiency up to 15.9% along with a maximum current efficiency of 42.6 cd/A and a maximum power efficiency of 24.1 lm/W.

5.
Phys Chem Chem Phys ; 24(8): 5070-5082, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35146498

ABSTRACT

Aiming to design bipolar organic semiconductors with high electron mobility and efficient red thermally activated delayed fluorescence (TADF), three donor-acceptor compounds were designed and synthesized selecting 1,8-naphthalimide as an acceptor and phenoxazine, 3,7-di-tert-butylphenothiazine or 2,7-di-tert-butyldimethyl-9,10-dihydroacridine as donor moieties. Aggregation induced emission enhancement was detected for the compounds causing efficient TADF in the solid-state. Photoluminescence quantum yields up to 77% were observed for the films of the compounds doped in a host. The compounds exhibited small singlet-triplet splitting (0.03-0.05 eV), and high reverse intersystem crossing rates of 2.08 × 105-1.13 × 106 s-1. The compounds were characterized by satisfactory hole and electron-injecting properties with ionization potentials of 5.72-5.83 eV and electron affinities of 2.79-2.91 eV. Bipolar charge transport was revealed by time of flight measurements. Electron transport with low dispersity and mobilities exceeding 2 × 10-3 cm2 V-1 s-1 was observed at an electric field of 4.6 × 105 V cm-1. The compounds were used as emitters in red electroluminescent devices, which showed maximum external quantum efficiencies up to 8.2%. Utilization of host-guest systems as light-emitting materials with hosts preferably transporting holes and TADF guests which preferably transport electrons allowed maximum efficiencies to be achieved at a practical brightness of 700-2200 cd m-2. DFT calculations of the geometry, electronic structure, absorption and photoluminescence spectra of all compounds were carried out to prove the conclusions drawn from the experiment. The results of the calculations clearly show that the first excited state for all compounds is the intramolecular charge transfer state. Quantitative analysis of the separation degree of electronic density during excitation allows the observed dependence of the blue shift value in the absorption and emission spectra on the increasing polarity of the solvent to be explained.

6.
Phys Chem Chem Phys ; 24(1): 313-320, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34889323

ABSTRACT

Thermally activated delayed fluorescence (TADF) compounds doped in solid hosts are prone to undergo solvation effects, similar to those in the solution state. Emission peak shifts and changes in emission decay rates usually follow solid-state solvation (SSS). However, here we show that typical SSS behavior in heavily doped TADF films could be of a completely different origin, mistakenly attributed to SSS. Typically, increasing the doping load was found to redshift the emission peak wavelength and enhance the rISC rate. However, more in-depth analysis revealed that SSS actually is negligible and both phenomena are caused by the specific behavior of delayed emission. Increasing the concentration of the TADF compound was shown to enhance the concentration quenching of long-lived delayed fluorescence from conformer states with the largest singlet energy, eventually leading to a gradual redshift of the delayed emission peak wavelength. Concomitantly, the loss of long-lived delayed fluorescence entailed reverse intersystem crossing rate enhancement, though the rate-governing singlet-triplet energy gap was gradually increasing. The observed phenomena are highly unwanted, burdening molecular structure and OLED performance optimization.

7.
Materials (Basel) ; 14(19)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34640007

ABSTRACT

The spectral properties of new boron-containing dyes were studied. One-component (pure dyes) and composite "Alq3+dye" thin films were fabricated using the thermal vacuum deposition method. The positions of the transmission spectra maxima in a one-component film are different for different film thicknesses. The best correlation of the maxima positions of the dye transmission spectra in solid and liquid solutions was observed for thicknesses of films close to a few (up to 10) monolayers. On the other hand, the absorption spectra maxima positions of one-component dye films (upper 10 nm) and composite films with high concentration, did not match the corresponding positions of absorption spectra maxima recorded in solutions. Comparison of the absorption spectra in one-component dye films and in solutions indicates the presence of both monomers and their aggregates in one-component films (contrary to solutions where such processes of aggregation do not take place, even at very high concentrations). Simultaneously with aggregation manifestation in the absorption spectra, the intensity of fluorescence of one-component dye films dramatically decreases. A quantum chemical simulation of the possible relative arrangement of two dye molecules indicates that the most possible of the simplest types of aggregates are physical dimers. Films of practical importance (due to efficient energy transfer from host to guest molecules when all singlet excitons are captured) possess a high quantum yield of fluorescence when reaching an impurity concentration of a few percent (aggregation does not take place yet).

8.
Beilstein J Org Chem ; 16: 989-1000, 2020.
Article in English | MEDLINE | ID: mdl-32509030

ABSTRACT

Four aryl-substituted acridan derivatives were designed, synthesized and characterized as electroactive materials for organic light emitting diodes based on emitters exhibiting thermally activated delayed fluorescence. These compounds possessed relatively high thermal stability with glass-transition temperatures being in the range of 79-97 °C. The compounds showed oxidation bands arising from acridanyl groups in the range of 0.31-038 V. Ionization potentials of the solid films ranged from 5.39 to 5.62 eV. The developed materials were characterized by triplet energies higher than 2.5 eV. The layer of 10-ethyl-9,9-dimethyl-2,7-di(naphthalen-1-yl)-9,10-dihydroacridine demonstrated hole mobilities reaching10-3 cm2/V·s at electric fields higher then ca. 2.5 × 105 V/cm. The selected compounds were used as hosts in electroluminescent devices which demonstrated maximum external quantum efficiencies up to 3.2%.

9.
Phys Chem Chem Phys ; 19(25): 16737-16748, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28621780

ABSTRACT

Seven new derivatives of phenanthro[9,10-d]imidazole having differenet substituents at the 1st and the 2nd positions of the phenanthroimidazole moiety were synthesized and characterized. The comparative study of their properties was performed employing thermal, optical, electrochemical and photoelectrical measurements. The properties of the newly synthesized compounds were compared with those of earlier reported derivatives of phenanthroimidazole and several interesting new findings were disclosed. Density functional theory calculations accompanied by optical spectroscopy measurements have shown the possibility of tuning the emission properties (excited-stated decay rate, fluorescence quantum yield, etc.) of phenanthro[9,10-d]imidazole derivatives via attachment of different substituents to the 1st and the 2nd positions. The most polar and bulky substituents linked to the 2nd position were found to have the greatest impact on the emissive properties of compounds causing (i) fluorescence quantum yield enhancement of dilute liquid and solid solutions (up to 97%), (ii) suppression of intramolecular torsion-induced nonradiative excited-state relaxation in rigid polymer films as well as (iii) inhibition of aggregation-promoted emission quenching in the neat films. Most of the studied compunds exhibited ambipolar charge transport character with comparable drift mobilities of holes and electrons. The highest hole and electron mobilities approaching 10-4 cm2 V-1 s-1 were observed for the derivative having a triphenylamino group at the 1st position of the imidazole ring and the phenyl group at the 2nd position. The estimated triplet energies of phenanthro[9,10-d]imidazole compounds were found to be in the range of 2.4-2.6 eV, which is sufficiently high to ensure effective energy transfer to yellow/red emitters.

SELECTION OF CITATIONS
SEARCH DETAIL
...